Lie Detection: Truth Identification from EEG Signal Using Frequency and Time Features with SVM Classifier

Israa Jalal
{"title":"Lie Detection: Truth Identification from EEG Signal Using Frequency and Time Features with SVM Classifier","authors":"Israa Jalal","doi":"10.31185/wjcm.78","DOIUrl":null,"url":null,"abstract":"This study investigated the approach of extracting features from single EEG channels when the minimum number of features in Electroencephalogram (EEG) channels, hence the visibility of using sets of features extracted from a single channel. The feature sets considered in previous studies are utilized to establish a combined set of features extracted from one channel. The feature is the set of statistical moments. Publicly available EEG datasets like the Dryad dataset, obtained from 15 participants, are tested into a support vector machine classifier. The 12 channels were trained separately, where each channel was divided into a different number of blocks, and the results indicated that some channels were bad. Some were very encouraging, reaching 100% in the number of blocks 16 in channels 8 and 12. In this article, the comparison of ANN algorithm test results published in a previous article with SVM algorithm test results for the same tested features and channels will be presented.","PeriodicalId":224730,"journal":{"name":"Wasit Journal of Computer and Mathematics Science","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Computer and Mathematics Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/wjcm.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the approach of extracting features from single EEG channels when the minimum number of features in Electroencephalogram (EEG) channels, hence the visibility of using sets of features extracted from a single channel. The feature sets considered in previous studies are utilized to establish a combined set of features extracted from one channel. The feature is the set of statistical moments. Publicly available EEG datasets like the Dryad dataset, obtained from 15 participants, are tested into a support vector machine classifier. The 12 channels were trained separately, where each channel was divided into a different number of blocks, and the results indicated that some channels were bad. Some were very encouraging, reaching 100% in the number of blocks 16 in channels 8 and 12. In this article, the comparison of ANN algorithm test results published in a previous article with SVM algorithm test results for the same tested features and channels will be presented.
测谎:基于SVM分类器的频率和时间特征的脑电信号真值识别
本研究探讨了当脑电图(EEG)通道中特征数量最少时,从单个脑电信号通道中提取特征的方法,从而使从单个通道中提取的特征集具有可见性。利用先前研究中考虑的特征集来建立从一个通道提取的组合特征集。特征是统计矩的集合。公开可用的EEG数据集,如Dryad数据集,从15个参与者那里获得,被测试成支持向量机分类器。对12个通道进行单独训练,每个通道被分成不同数量的块,结果表明一些通道是不好的。有些非常令人鼓舞,在通道8和12中达到了100%的区块16。本文将在相同的测试特征和通道下,将之前文章中发表的ANN算法测试结果与SVM算法测试结果进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信