D-Optimality and D L -optimality criteria for incomplete block designs

A. Oladugba, M. Madukaife
{"title":"D-Optimality and D L -optimality criteria for incomplete block designs","authors":"A. Oladugba, M. Madukaife","doi":"10.4314/GJMAS.V8I2.53753","DOIUrl":null,"url":null,"abstract":"The adequacy of an experimental design can be determined from the information matrix. The D-optimality criterion is based on the determinant of the information matrix M(ξ) (ξ is any design measure) of a design, that is it maximizes the determinant of the information matrix M(ξ) or, equivalently, minimizes the determinant of inverse of the information matrix M−1(ξ ) .There are cases where the information matrix M(ξ) of a design degenerates (that is, the determinant is zero). In this situation, we introduce the use of the loss of information matrix designated as L(ξ) matrix. The loss of information matrix L(ξ) is a symmetric positive definite matrix that has exactly the same diagonal elements as those of the information matrix M(ξ) and the off-diagonal elements lying between zero and one. D L -optimality criterion measures the determinant of the loss of information matrix.In this paper, we consider the correspondence between the D-and D L -optimality criteria, that is whether a D-optimal design is also D L -optimal, in a block or more than one block using a regular and irregular experimental region. An optimal design is selected with the aid of the combinatorial algorithm developed by Onukogu and Iwundu (2008). Breaking of ties existing in Doptimality criterion using the DL-optimality criterion is also considered. KEYWORDS: Loss of information; D L -optimality criterion; Incomplete block design; Regular and irregular experimental region","PeriodicalId":126381,"journal":{"name":"Global Journal of Mathematical Sciences","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4314/GJMAS.V8I2.53753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The adequacy of an experimental design can be determined from the information matrix. The D-optimality criterion is based on the determinant of the information matrix M(ξ) (ξ is any design measure) of a design, that is it maximizes the determinant of the information matrix M(ξ) or, equivalently, minimizes the determinant of inverse of the information matrix M−1(ξ ) .There are cases where the information matrix M(ξ) of a design degenerates (that is, the determinant is zero). In this situation, we introduce the use of the loss of information matrix designated as L(ξ) matrix. The loss of information matrix L(ξ) is a symmetric positive definite matrix that has exactly the same diagonal elements as those of the information matrix M(ξ) and the off-diagonal elements lying between zero and one. D L -optimality criterion measures the determinant of the loss of information matrix.In this paper, we consider the correspondence between the D-and D L -optimality criteria, that is whether a D-optimal design is also D L -optimal, in a block or more than one block using a regular and irregular experimental region. An optimal design is selected with the aid of the combinatorial algorithm developed by Onukogu and Iwundu (2008). Breaking of ties existing in Doptimality criterion using the DL-optimality criterion is also considered. KEYWORDS: Loss of information; D L -optimality criterion; Incomplete block design; Regular and irregular experimental region
不完全块设计的D-最优性和dl -最优性准则
实验设计的充分性可以从信息矩阵中确定。d -最优性准则是基于一个设计的信息矩阵M(ξ)的行列式(ξ是任何设计度量),即它使信息矩阵M(ξ)的行列式最大化,或等价地使信息矩阵M - 1(ξ)的逆行列式最小化。在某些情况下,一个设计的信息矩阵M(ξ)退化(即行列式为零)。在这种情况下,我们引入了将信息损失矩阵命名为L(ξ)矩阵的方法。信息矩阵L(ξ)的损失是一个对称的正定矩阵,它与信息矩阵M(ξ)具有完全相同的对角元素,并且具有介于0和1之间的非对角元素。dl -最优准则衡量信息矩阵损失的行列式。在本文中,我们考虑D-和dl -最优性准则之间的对应关系,即D-最优设计是否也是dl -最优,在一个块或多个块中使用规则和不规则的实验区域。利用Onukogu和Iwundu(2008)开发的组合算法进行优化设计。还考虑了用dl -最优性准则打破非最优性准则中存在的联系。关键词:信息丢失;dl -最优准则;不完全块设计;规则和不规则实验区域
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信