Parallel Matrix Multiplication Algorithms on Hypercube Multiprocessors

Peizong Lee
{"title":"Parallel Matrix Multiplication Algorithms on Hypercube Multiprocessors","authors":"Peizong Lee","doi":"10.1142/S012905339500021X","DOIUrl":null,"url":null,"abstract":"In this paper, we present three parallel algorithms for matrix multiplication. The first one, which employs pipelining techniques on a mesh grid, uses only one copy of data matrices. The second one uses multiple copies of data matrices also on a mesh grid. Although data communication operations of the second algorithm are reduced, the requirement of local data memory for each processing element increases. The third one, which uses a cubic grid, shows the trade-offs between reducing the computation time and reducing the communication overhead. Performance models and feasibilities of these three algorithms are studied. We analyze the interplay among the numbers of processing elements, the communication overhead, and the requirements of local memory in each processing element. We also present experimental results of these three algorithms on a 32-node nCUBE-2 computer.","PeriodicalId":270006,"journal":{"name":"Int. J. High Speed Comput.","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. High Speed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S012905339500021X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present three parallel algorithms for matrix multiplication. The first one, which employs pipelining techniques on a mesh grid, uses only one copy of data matrices. The second one uses multiple copies of data matrices also on a mesh grid. Although data communication operations of the second algorithm are reduced, the requirement of local data memory for each processing element increases. The third one, which uses a cubic grid, shows the trade-offs between reducing the computation time and reducing the communication overhead. Performance models and feasibilities of these three algorithms are studied. We analyze the interplay among the numbers of processing elements, the communication overhead, and the requirements of local memory in each processing element. We also present experimental results of these three algorithms on a 32-node nCUBE-2 computer.
超立方体多处理器上的并行矩阵乘法算法
本文给出了矩阵乘法的三种并行算法。第一种方法在网格上采用流水线技术,只使用数据矩阵的一个副本。第二种方法也在网格上使用数据矩阵的多个副本。虽然减少了第二种算法的数据通信操作,但每个处理元素对本地数据存储器的需求增加了。第三个示例使用立方网格,显示了减少计算时间和减少通信开销之间的权衡。研究了这三种算法的性能模型和可行性。我们分析了处理元素的数量、通信开销和每个处理元素对本地内存的需求之间的相互作用。并给出了这三种算法在32节点nCUBE-2计算机上的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信