{"title":"Lung Segmentation Enhances COVID-19 Detection","authors":"R. Turnbull","doi":"10.1109/ICASSPW59220.2023.10193492","DOIUrl":null,"url":null,"abstract":"Improving automated analysis of medical imaging will provide clinicians more options in providing care for patients. The 2023 AI-enabled Medical Image Analysis Workshop and Covid-19 Diagnosis Competition (AI-MIA-COV19D) provides an opportunity to test and refine machine learning methods for detecting the presence and severity of COVID-19 in patients from CT scans. This paper presents version 2 of Cov3d, a deep learning model submitted in the 2022 competition. The model has been improved through a preprocessing step which segments the lungs in the CT scan and crops the input to this region. It results in a macro F1 score of 84.92% for predicting the presence of COVID-19 in the CT scans on the test dataset which came second place in the competition. The model achieved a macro F1 score of 59.06% on the test dataset for predicting the severity of COVID-19 which was the best performing model for that task of the competition.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Improving automated analysis of medical imaging will provide clinicians more options in providing care for patients. The 2023 AI-enabled Medical Image Analysis Workshop and Covid-19 Diagnosis Competition (AI-MIA-COV19D) provides an opportunity to test and refine machine learning methods for detecting the presence and severity of COVID-19 in patients from CT scans. This paper presents version 2 of Cov3d, a deep learning model submitted in the 2022 competition. The model has been improved through a preprocessing step which segments the lungs in the CT scan and crops the input to this region. It results in a macro F1 score of 84.92% for predicting the presence of COVID-19 in the CT scans on the test dataset which came second place in the competition. The model achieved a macro F1 score of 59.06% on the test dataset for predicting the severity of COVID-19 which was the best performing model for that task of the competition.