Tensor Decomposition for Link Prediction in Temporal Knowledge Graphs

M. Chekol
{"title":"Tensor Decomposition for Link Prediction in Temporal Knowledge Graphs","authors":"M. Chekol","doi":"10.1145/3460210.3493558","DOIUrl":null,"url":null,"abstract":"We study temporal knowledge graph completion by using tensor decomposition. In particular, we use Candecomp/Parafac decomposition to factorize a given four dimensional sparse representation of a temporal knowledge graph into rank-one tensors that correspond to entities (subject and object), relations and timestamps. Using the factorized tensors, we can perform link and timestamp prediction. We compared our approach against the state of the art and found out that we are highly competitive. We report our preliminary experimental results on 5 different datasets.","PeriodicalId":377331,"journal":{"name":"Proceedings of the 11th on Knowledge Capture Conference","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th on Knowledge Capture Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460210.3493558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We study temporal knowledge graph completion by using tensor decomposition. In particular, we use Candecomp/Parafac decomposition to factorize a given four dimensional sparse representation of a temporal knowledge graph into rank-one tensors that correspond to entities (subject and object), relations and timestamps. Using the factorized tensors, we can perform link and timestamp prediction. We compared our approach against the state of the art and found out that we are highly competitive. We report our preliminary experimental results on 5 different datasets.
时间知识图中链接预测的张量分解
我们利用张量分解来研究时态知识图补全。特别是,我们使用Candecomp/Parafac分解将时间知识图的给定四维稀疏表示分解为对应实体(主体和客体)、关系和时间戳的一级张量。利用分解张量,我们可以进行链接和时间戳预测。我们将我们的方法与最先进的技术进行了比较,发现我们具有很强的竞争力。我们报告了我们在5个不同数据集上的初步实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信