Exploring the Gradient for Video Quality Assessment

Hossein Motamednia, Pooryaa Cheraaqee, Azadeh Mansouri
{"title":"Exploring the Gradient for Video Quality Assessment","authors":"Hossein Motamednia, Pooryaa Cheraaqee, Azadeh Mansouri","doi":"10.1109/MVIP49855.2020.9116869","DOIUrl":null,"url":null,"abstract":"This paper presents an algorithm which incorporates spatial and temporal gradients for full reference video quality assessment. In the proposed method the frame-based gradient magnitude similarity deviation is calculated to form the spatial quality vector. To capture the temporal distortion, the similarity of frame difference is measured. In the proposed method, we extract the worst scores in both the spatial and temporal vectors by introducing the variable-length temporal window for max-pooling operation. The resultant vectors are then combined to form the final score. The performance of the proposed method is evaluated on LIVE SD and EPFL- PoliMI datasets. The results clearly illustrate that, despite the computational efficiency, the predictions are highly correlated with human visual system.","PeriodicalId":255375,"journal":{"name":"2020 International Conference on Machine Vision and Image Processing (MVIP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Machine Vision and Image Processing (MVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MVIP49855.2020.9116869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an algorithm which incorporates spatial and temporal gradients for full reference video quality assessment. In the proposed method the frame-based gradient magnitude similarity deviation is calculated to form the spatial quality vector. To capture the temporal distortion, the similarity of frame difference is measured. In the proposed method, we extract the worst scores in both the spatial and temporal vectors by introducing the variable-length temporal window for max-pooling operation. The resultant vectors are then combined to form the final score. The performance of the proposed method is evaluated on LIVE SD and EPFL- PoliMI datasets. The results clearly illustrate that, despite the computational efficiency, the predictions are highly correlated with human visual system.
视频质量评价的梯度研究
本文提出了一种结合时空梯度的全参考视频质量评估算法。该方法计算基于帧的梯度震级相似偏差,形成空间质量矢量。为了捕获时间畸变,测量了帧差的相似度。在该方法中,我们通过引入变长时间窗口进行最大池化操作,提取空间和时间向量上的最差分数。然后将结果向量组合起来形成最终分数。在LIVE SD和EPFL- PoliMI数据集上对该方法的性能进行了评价。结果清楚地表明,尽管计算效率高,但预测与人类视觉系统高度相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信