An Optimized Resource Allocation Approach for Data-Intensive Workloads Using Topology-Aware Resource Allocation

J. J. Rao, K. Cornelio
{"title":"An Optimized Resource Allocation Approach for Data-Intensive Workloads Using Topology-Aware Resource Allocation","authors":"J. J. Rao, K. Cornelio","doi":"10.1109/CCEM.2012.6354595","DOIUrl":null,"url":null,"abstract":"This paper proposes an optimized resource allocation mechanism in Infrastructure-as-a-Service (IaaS)- based cloud systems. Performance of distributed data-intensive applications are impacted significantly as current IaaS systems are usually unaware of the hosted application's requirements and hence allocating resources independent of its needs. To address this resource allocation problem and to optimise the allocation, we enhance an architecture that adopts a \"what if\" methodology to guide allocation decisions taken by the IaaS. The architecture uses a prediction engine with a lightweight simulator to estimate the performance of a given resource allocation and an evolutionary algorithm that includes an evolution strategies algorithm and a genetic algorithm, to find an optimized solution in the large search space.","PeriodicalId":409273,"journal":{"name":"2012 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCEM.2012.6354595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes an optimized resource allocation mechanism in Infrastructure-as-a-Service (IaaS)- based cloud systems. Performance of distributed data-intensive applications are impacted significantly as current IaaS systems are usually unaware of the hosted application's requirements and hence allocating resources independent of its needs. To address this resource allocation problem and to optimise the allocation, we enhance an architecture that adopts a "what if" methodology to guide allocation decisions taken by the IaaS. The architecture uses a prediction engine with a lightweight simulator to estimate the performance of a given resource allocation and an evolutionary algorithm that includes an evolution strategies algorithm and a genetic algorithm, to find an optimized solution in the large search space.
基于拓扑感知资源分配的数据密集型工作负载优化资源分配方法
提出了一种基于基础设施即服务(IaaS)的云系统资源优化分配机制。分布式数据密集型应用程序的性能受到显著影响,因为当前的IaaS系统通常不知道托管应用程序的需求,因此分配的资源与它的需求无关。为了解决这个资源分配问题并优化分配,我们增强了一个架构,该架构采用“假设”方法来指导IaaS做出分配决策。该体系结构使用一个带有轻量级模拟器的预测引擎来估计给定资源分配的性能,并使用一个进化算法(包括进化策略算法和遗传算法)来在大搜索空间中找到优化解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信