TransNUNet: Using Attention Mechanism for Whole Heart Segmentation

Xiaoniu Yang, Xiaolin Tian
{"title":"TransNUNet: Using Attention Mechanism for Whole Heart Segmentation","authors":"Xiaoniu Yang, Xiaolin Tian","doi":"10.1109/ICPECA53709.2022.9719101","DOIUrl":null,"url":null,"abstract":"Cardiac CT segmentation of the whole heart is one of the very complex and key technologies in the auxiliary treatment of cardiovascular diseases. It can help doctors analyze the lesion and other key areas. Because the data of cardiac CT images have the characteristics of small data volume and large size, there are higher requirements for the processing speed and segmentation accuracy of the algorithm. This research proposes a semantic segmentation network based on transformer. This method uses TransUNet as the main architecture, introduces an attention mechanism on its basis, and improves the loss function. Our experiment achieved a Dice score of 0.921 on the dataset from MM-WHS 2017 Challenge, and the results show that the method has good performance.","PeriodicalId":244448,"journal":{"name":"2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Power, Electronics and Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA53709.2022.9719101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Cardiac CT segmentation of the whole heart is one of the very complex and key technologies in the auxiliary treatment of cardiovascular diseases. It can help doctors analyze the lesion and other key areas. Because the data of cardiac CT images have the characteristics of small data volume and large size, there are higher requirements for the processing speed and segmentation accuracy of the algorithm. This research proposes a semantic segmentation network based on transformer. This method uses TransUNet as the main architecture, introduces an attention mechanism on its basis, and improves the loss function. Our experiment achieved a Dice score of 0.921 on the dataset from MM-WHS 2017 Challenge, and the results show that the method has good performance.
TransNUNet:利用注意机制进行全心分割
心脏CT全心分割是心血管疾病辅助治疗中非常复杂和关键的技术之一。它可以帮助医生分析病变和其他关键区域。由于心脏CT图像数据具有数据量小、尺寸大的特点,对算法的处理速度和分割精度都有较高的要求。本研究提出了一种基于变压器的语义分割网络。该方法以TransUNet为主要架构,在其基础上引入注意机制,并对损失函数进行改进。我们的实验在MM-WHS 2017 Challenge数据集上获得了0.921的Dice得分,结果表明该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信