Eye Detection For Drivers Using Convolutional Neural Networks With Automatically Generated Ground Truth Data

Sorin Valcan, Mihail Gaianu
{"title":"Eye Detection For Drivers Using Convolutional Neural Networks With Automatically Generated Ground Truth Data","authors":"Sorin Valcan, Mihail Gaianu","doi":"10.1109/SYNASC57785.2022.00045","DOIUrl":null,"url":null,"abstract":"Eye detection is an essential feature for driver monitoring systems acting as a base functionality for other algorithms like attention or drowsiness detection. Multiple methods for eye detection exist. The machine learning based methods involve a manual labeling process in order to generate training and testing datasets. This paper presents an eye detection algorithm based on convolutional neural networks trained using automatically generated ground truth data and proves that we can train very good machine learning models using automatically generated labels. Such approach reduces the effort needed for manual labeling and data preprocessing.","PeriodicalId":446065,"journal":{"name":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 24th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC57785.2022.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Eye detection is an essential feature for driver monitoring systems acting as a base functionality for other algorithms like attention or drowsiness detection. Multiple methods for eye detection exist. The machine learning based methods involve a manual labeling process in order to generate training and testing datasets. This paper presents an eye detection algorithm based on convolutional neural networks trained using automatically generated ground truth data and proves that we can train very good machine learning models using automatically generated labels. Such approach reduces the effort needed for manual labeling and data preprocessing.
使用卷积神经网络自动生成地面真实数据的驾驶员眼睛检测
眼睛检测是驾驶员监控系统的一个基本功能,它是注意力或睡意检测等其他算法的基础功能。存在多种眼睛检测方法。基于机器学习的方法涉及手动标记过程,以生成训练和测试数据集。本文提出了一种基于卷积神经网络的眼部检测算法,该算法使用自动生成的地面真实数据进行训练,并证明我们可以使用自动生成的标签训练非常好的机器学习模型。这种方法减少了人工标记和数据预处理所需的工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信