Prediction of shear strength of corrosion reinforced concrete beams using Artificial Neural Network

P. G. Asteris, Thuy-Anh Nguyen
{"title":"Prediction of shear strength of corrosion reinforced concrete beams using Artificial Neural Network","authors":"P. G. Asteris, Thuy-Anh Nguyen","doi":"10.58845/jstt.utt.2022.en56","DOIUrl":null,"url":null,"abstract":"The shear strength of corroded reinforced concrete (CRC) beams is a critical consideration during the design stages of RC structures. In this study, we propose a machine learning technique for estimating the shear strength of CRC beams across a range of service periods.  To do this, we gathered 158 CRC beam shear tests and used Artificial Neural Network (ANN) to create a forecast model for the considered output. Twelve input variables indicate the geometrical and material properties, reinforcing parameters, and the degree of corrosion in the beam, whereas the shear strength is the output considered.  The database is designed to employ 70 percent of the data point to train the model and 30 percent to assess the performance. The model makes outstanding predictions, according to the results, with an R2 value of 0.989. In addition, five empirical shear strength models in the literature are utilized to test the suggested ANN model, demonstrating that the new model performs much better. With any given service period, the suggested time-dependent prediction model can offer the shear strength of CRC beams.","PeriodicalId":117856,"journal":{"name":"Journal of Science and Transport Technology","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Science and Transport Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58845/jstt.utt.2022.en56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The shear strength of corroded reinforced concrete (CRC) beams is a critical consideration during the design stages of RC structures. In this study, we propose a machine learning technique for estimating the shear strength of CRC beams across a range of service periods.  To do this, we gathered 158 CRC beam shear tests and used Artificial Neural Network (ANN) to create a forecast model for the considered output. Twelve input variables indicate the geometrical and material properties, reinforcing parameters, and the degree of corrosion in the beam, whereas the shear strength is the output considered.  The database is designed to employ 70 percent of the data point to train the model and 30 percent to assess the performance. The model makes outstanding predictions, according to the results, with an R2 value of 0.989. In addition, five empirical shear strength models in the literature are utilized to test the suggested ANN model, demonstrating that the new model performs much better. With any given service period, the suggested time-dependent prediction model can offer the shear strength of CRC beams.
基于人工神经网络的钢筋混凝土腐蚀梁抗剪强度预测
腐蚀钢筋混凝土梁的抗剪强度是钢筋混凝土结构设计阶段的一个重要考虑因素。在这项研究中,我们提出了一种机器学习技术来估计CRC梁在一系列服务期间的抗剪强度。为此,我们收集了158个CRC梁剪切试验,并使用人工神经网络(ANN)为考虑的输出创建一个预测模型。12个输入变量表示几何和材料特性,增强参数,以及梁的腐蚀程度,而抗剪强度是考虑的输出。该数据库被设计为使用70%的数据点来训练模型,30%用于评估性能。结果表明,该模型预测效果较好,R2值为0.989。此外,利用文献中的5个经验抗剪强度模型对提出的人工神经网络模型进行了检验,结果表明,新模型的性能要好得多。在任意给定的服役期限内,所提出的随时间变化的预测模型都能给出CRC梁的抗剪强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信