Square root information filtering using the covariance spectral decomposition

Y. Oshman
{"title":"Square root information filtering using the covariance spectral decomposition","authors":"Y. Oshman","doi":"10.1109/CDC.1988.194335","DOIUrl":null,"url":null,"abstract":"A square-root state-estimation algorithm is introduced which operates in the information mode in both the time and the measurement update stages. The algorithm, called the V-Lambda filter, is based on the spectral decomposition of the covariance matrix into a V Lambda V/sup T/ form, where V is the matrix whose columns are the eigenvectors of the covariance matrix and Lambda is the diagonal matrix of its eigenvalues. The algorithm updates a normalized state estimate along with the information matrix square-root factors, thus doing away with the gain computation. Singular value decomposition is used as a sole computational tool in both the eigenvectors-eigenvalues and the normalized state-estimate updates, rendering a complete estimation scheme with exceptional numerical stability and precision. A typical numerical example is used to demonstrate the performance of the V-Lambda filter as compared to that of the corresponding conventional Kalman algorithm.<<ETX>>","PeriodicalId":113534,"journal":{"name":"Proceedings of the 27th IEEE Conference on Decision and Control","volume":"6 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.1988.194335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A square-root state-estimation algorithm is introduced which operates in the information mode in both the time and the measurement update stages. The algorithm, called the V-Lambda filter, is based on the spectral decomposition of the covariance matrix into a V Lambda V/sup T/ form, where V is the matrix whose columns are the eigenvectors of the covariance matrix and Lambda is the diagonal matrix of its eigenvalues. The algorithm updates a normalized state estimate along with the information matrix square-root factors, thus doing away with the gain computation. Singular value decomposition is used as a sole computational tool in both the eigenvectors-eigenvalues and the normalized state-estimate updates, rendering a complete estimation scheme with exceptional numerical stability and precision. A typical numerical example is used to demonstrate the performance of the V-Lambda filter as compared to that of the corresponding conventional Kalman algorithm.<>
利用协方差谱分解的平方根信息滤波
介绍了一种平方根状态估计算法,该算法在时间和测量更新阶段均以信息方式工作。该算法称为V-Lambda滤波器,是基于协方差矩阵的谱分解成V Lambda V/sup T/形式,其中V是矩阵,其列是协方差矩阵的特征向量,Lambda是其特征值的对角矩阵。该算法随信息矩阵平方根因子更新归一化状态估计,从而省去了增益计算。在特征向量特征值更新和归一化状态估计更新中,奇异值分解作为唯一的计算工具,提供了一个完整的估计方案,具有优异的数值稳定性和精度。用一个典型的数值例子来说明V-Lambda滤波器与相应的传统卡尔曼算法的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信