Two-dimensional Bragg resonator with nonperiodic radial and angular perturbation of parameters

V. Borulko, V.E. Ivanilov
{"title":"Two-dimensional Bragg resonator with nonperiodic radial and angular perturbation of parameters","authors":"V. Borulko, V.E. Ivanilov","doi":"10.1109/MMET.2000.890493","DOIUrl":null,"url":null,"abstract":"The reflection and angular-mode transformation of electromagnetic waves propagating in a medium with small two-dimensional quasi-periodic inhomogeneity are theoretically considered. Using a complex form of the asymptotic method of Krylov, Bogoliubov and Mitropolsky (1961), expressions for the coupling coefficients of the propagating waves are derived. The existence of \"Brewster radius\" in the Bragg phenomenon is discovered for the case of TE waves in a medium with periodic perturbation of permeability. Radial distributions of complex amplitudes are numerically computed.","PeriodicalId":344401,"journal":{"name":"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings 2000 International Conference on Mathematical Methods in Electromagnetic Theory (Cat. No.00EX413)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMET.2000.890493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The reflection and angular-mode transformation of electromagnetic waves propagating in a medium with small two-dimensional quasi-periodic inhomogeneity are theoretically considered. Using a complex form of the asymptotic method of Krylov, Bogoliubov and Mitropolsky (1961), expressions for the coupling coefficients of the propagating waves are derived. The existence of "Brewster radius" in the Bragg phenomenon is discovered for the case of TE waves in a medium with periodic perturbation of permeability. Radial distributions of complex amplitudes are numerically computed.
具有参数非周期径向和角摄动的二维布拉格谐振腔
从理论上考虑了电磁波在小二维准周期非均匀性介质中的反射和角模变换。利用Krylov, Bogoliubov和Mitropolsky(1961)的渐近方法的复数形式,导出了传播波耦合系数的表达式。在具有周期性磁导率扰动的介质中,发现了TE波在Bragg现象中存在“布鲁斯特半径”。对复振幅的径向分布进行了数值计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信