An incremental growing neural gas learns topologies

Y. Prudent, A. Ennaji
{"title":"An incremental growing neural gas learns topologies","authors":"Y. Prudent, A. Ennaji","doi":"10.1109/IJCNN.2005.1556026","DOIUrl":null,"url":null,"abstract":"An incremental and growing network model is introduced which is able to learn the topological relations in a given set of input vectors by means of a simple Hebb-like learning rule. We propose a new algorithm for a SOM which can learn new input data (plasticity) without degrading the previously trained network and forgetting the old input data (stability). We report the validation of this model on experiments using a synthetic problem, the IRIS database and the handwriting digit recognition problem over a portion of the NIST database. Finally we show how to use this network for clustering and semi-supervised clustering.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1556026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 103

Abstract

An incremental and growing network model is introduced which is able to learn the topological relations in a given set of input vectors by means of a simple Hebb-like learning rule. We propose a new algorithm for a SOM which can learn new input data (plasticity) without degrading the previously trained network and forgetting the old input data (stability). We report the validation of this model on experiments using a synthetic problem, the IRIS database and the handwriting digit recognition problem over a portion of the NIST database. Finally we show how to use this network for clustering and semi-supervised clustering.
增量增长的神经气体学习拓扑结构
介绍了一种增量增长网络模型,该模型能够通过简单的类hebb学习规则学习给定输入向量集合中的拓扑关系。我们提出了一种新的SOM算法,它可以学习新的输入数据(可塑性),而不会降低先前训练的网络和忘记旧的输入数据(稳定性)。我们报告了该模型在一个综合问题、IRIS数据库和部分NIST数据库的手写数字识别问题上的实验验证。最后,我们展示了如何使用该网络进行聚类和半监督聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信