Identification of systems with fast and slow dynamics using non-uniform sampling

S. M. El-Feky, A. M. Zaki, Ayman M. Bahaa-Eldin, M. H. El-Shafey
{"title":"Identification of systems with fast and slow dynamics using non-uniform sampling","authors":"S. M. El-Feky, A. M. Zaki, Ayman M. Bahaa-Eldin, M. H. El-Shafey","doi":"10.1109/ICCES.2015.7393021","DOIUrl":null,"url":null,"abstract":"This paper presents a new approach for modeling linear time invariant (LTI) discrete systems with fast and slow dynamics from its input-output data. The new method selects the `best' sample spacing among the output samples to best fit the model to the input-output data. The singular value decomposition (SVD) is used to find the `best' sample spacing to reduce the size of the data matrix in a way such that we catch both slow and fast system dynamics on one hand and still improve the numerical condition of the reduced matrix in order to increase the immunity of the parameter estimation problem against data noise.","PeriodicalId":227813,"journal":{"name":"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Tenth International Conference on Computer Engineering & Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2015.7393021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a new approach for modeling linear time invariant (LTI) discrete systems with fast and slow dynamics from its input-output data. The new method selects the `best' sample spacing among the output samples to best fit the model to the input-output data. The singular value decomposition (SVD) is used to find the `best' sample spacing to reduce the size of the data matrix in a way such that we catch both slow and fast system dynamics on one hand and still improve the numerical condition of the reduced matrix in order to increase the immunity of the parameter estimation problem against data noise.
非均匀采样法辨识快慢动态系统
本文提出了一种利用输入输出数据对具有快慢动态的线性时不变离散系统进行建模的新方法。新方法在输出样本中选择“最佳”样本间隔,以使模型最适合输入输出数据。奇异值分解(SVD)用于寻找“最佳”样本间隔来减小数据矩阵的大小,这样一方面我们可以捕捉慢速和快速系统动力学,同时还可以改善简化矩阵的数值条件,以增加参数估计问题对数据噪声的免疫力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信