Measurement of size error in industrial CT system with Calotte cube

Daodang Wang, Xixi Chen, Fumin Wang, Yu-shu Shi, Ming Kong, Jun Zhao
{"title":"Measurement of size error in industrial CT system with Calotte cube","authors":"Daodang Wang, Xixi Chen, Fumin Wang, Yu-shu Shi, Ming Kong, Jun Zhao","doi":"10.1117/12.2180600","DOIUrl":null,"url":null,"abstract":"A measurement method with calotte cube was proposed to realize the high-precision calibration of size error in industrial computer tomography (CT) system. Using the traceability of calotte cube, the measurement of the repeatability error, probing error and length measurement error of industrial CT system was carried out to increase the acceptance of CT as a metrological method. The main error factors, including the material absorption, projection number and integration time and so on, had been studied in detail. Experimental results show that the proposed measurement method provides a feasible way to measure the size error of industrial CT system. Compared with the measurement results with invar 27- sphere gauge, a high accuracy in the order of microns is realized with the proposed method based on calotte cube. Differing from the invar 27-sphere gauge method, the material particularity of calotte cube (material of metallic titanium) could introduce beam hardening effect, the study on the influence of material absorption and structural specificity on the measurement, which provides significant reference for the measurement of metallic samples, is necessary.","PeriodicalId":380636,"journal":{"name":"Precision Engineering Measurements and Instrumentation","volume":"9446 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering Measurements and Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2180600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A measurement method with calotte cube was proposed to realize the high-precision calibration of size error in industrial computer tomography (CT) system. Using the traceability of calotte cube, the measurement of the repeatability error, probing error and length measurement error of industrial CT system was carried out to increase the acceptance of CT as a metrological method. The main error factors, including the material absorption, projection number and integration time and so on, had been studied in detail. Experimental results show that the proposed measurement method provides a feasible way to measure the size error of industrial CT system. Compared with the measurement results with invar 27- sphere gauge, a high accuracy in the order of microns is realized with the proposed method based on calotte cube. Differing from the invar 27-sphere gauge method, the material particularity of calotte cube (material of metallic titanium) could introduce beam hardening effect, the study on the influence of material absorption and structural specificity on the measurement, which provides significant reference for the measurement of metallic samples, is necessary.
用卡洛特立方体测量工业CT系统的尺寸误差
为了实现工业计算机断层扫描(CT)系统尺寸误差的高精度标定,提出了一种用卡洛特立方体测量的方法。利用卡洛特立方体的可追溯性,对工业CT系统的可重复性误差、探测误差和长度测量误差进行了测量,以提高CT作为一种计量方法的接受度。对材料吸收、投影数、积分时间等主要误差因素进行了详细研究。实验结果表明,所提出的测量方法为工业CT系统的尺寸误差测量提供了一种可行的方法。与invar 27球量规的测量结果相比,该方法实现了微米量级的高精度测量。不同于invar 27球量规法,卡罗特立方(金属钛材料)的材料特殊性会引入光束硬化效应,研究材料吸收和结构特异性对测量的影响,为金属样品的测量提供重要参考,是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信