Linear cyclic pursuit based prediction of personal space violation in surveillance video

Neha Bhargava, S. Chaudhuri, G. Seetharaman
{"title":"Linear cyclic pursuit based prediction of personal space violation in surveillance video","authors":"Neha Bhargava, S. Chaudhuri, G. Seetharaman","doi":"10.1109/AIPR.2013.6749324","DOIUrl":null,"url":null,"abstract":"Analysis of human interaction in a social gathering is of high interest in security and surveillance applications. It is also of psychological interest to study the interaction to get a better understanding of the participant behavior. This paper is an attempt to explore and analyze interactions among the individuals from a single calibrated camera. We are particularly interested in trajectory prediction. These predicted trajectories of individuals are then used in predicting personal space violation. Each individual, represented by a feature point in a 2.5D coordinate system, is tracked using Lucas-Kanade tracking algorithm. We use the linear cyclic pursuit framework to model this point motion. This model is used for short-term prediction of individual trajectory. We demonstrate these ideas on different types of datasets.","PeriodicalId":435620,"journal":{"name":"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2013.6749324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Analysis of human interaction in a social gathering is of high interest in security and surveillance applications. It is also of psychological interest to study the interaction to get a better understanding of the participant behavior. This paper is an attempt to explore and analyze interactions among the individuals from a single calibrated camera. We are particularly interested in trajectory prediction. These predicted trajectories of individuals are then used in predicting personal space violation. Each individual, represented by a feature point in a 2.5D coordinate system, is tracked using Lucas-Kanade tracking algorithm. We use the linear cyclic pursuit framework to model this point motion. This model is used for short-term prediction of individual trajectory. We demonstrate these ideas on different types of datasets.
基于线性循环追踪的监控视频中个人空间侵犯预测
分析社交聚会中的人际互动在安全和监控应用中具有很高的意义。研究交互作用以更好地理解参与者的行为也是心理学的兴趣所在。本文试图从单个校准相机探索和分析个体之间的相互作用。我们对轨迹预测特别感兴趣。这些预测的个人轨迹然后被用于预测个人空间侵犯。每个个体在2.5D坐标系中由一个特征点表示,使用Lucas-Kanade跟踪算法进行跟踪。我们使用线性循环追踪框架来模拟这个点的运动。该模型用于个体轨迹的短期预测。我们在不同类型的数据集上演示了这些想法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信