15.7 Heterogeneous integrated CMOS-graphene sensor array for dopamine detection

B. Nasri, Ting Wu, A. Alharbi, Mayank Gupta, RamKumar RanjithKumar, Sunit P. Sebastian, Yue Wang, R. Kiani, D. Shahrjerdi
{"title":"15.7 Heterogeneous integrated CMOS-graphene sensor array for dopamine detection","authors":"B. Nasri, Ting Wu, A. Alharbi, Mayank Gupta, RamKumar RanjithKumar, Sunit P. Sebastian, Yue Wang, R. Kiani, D. Shahrjerdi","doi":"10.1109/ISSCC.2017.7870364","DOIUrl":null,"url":null,"abstract":"Understanding dopamine (DA) signaling in the brain is essential for advancing our knowledge of pathological disorders such as drug addiction, Parkinson's disease, and schizophrenia. Currently, fast-scan cyclic voltammetry (FSCV) with carbon microfiber (CMF) electrodes is the method of choice in neuroscience labs for monitoring the concentration of phasic (transient) DA release. This method offers sub-second temporal resolution and high specificity because the signal of interest occurs at a known potential. However, existing CMF electrodes are bulky, limiting the spatial resolution to single-site measurements. Further, they are produced through manual processes (e.g. cutting CMFs under optical microscope), thus introducing significant device variability [1]. Lastly, when long probes (3-to-5cm) are used to monitor DA release in deep brain structures of large animals, environmental noise severely diminishes the detection limit [1]. To address these problems, we combine advances in nanofabrication with silicon chip manufacturing to create a heterogeneous integrated CMOS-graphene sensor for accurate measurement of DA with high spatiotemporal resolution (Fig. 15.7.1).","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Understanding dopamine (DA) signaling in the brain is essential for advancing our knowledge of pathological disorders such as drug addiction, Parkinson's disease, and schizophrenia. Currently, fast-scan cyclic voltammetry (FSCV) with carbon microfiber (CMF) electrodes is the method of choice in neuroscience labs for monitoring the concentration of phasic (transient) DA release. This method offers sub-second temporal resolution and high specificity because the signal of interest occurs at a known potential. However, existing CMF electrodes are bulky, limiting the spatial resolution to single-site measurements. Further, they are produced through manual processes (e.g. cutting CMFs under optical microscope), thus introducing significant device variability [1]. Lastly, when long probes (3-to-5cm) are used to monitor DA release in deep brain structures of large animals, environmental noise severely diminishes the detection limit [1]. To address these problems, we combine advances in nanofabrication with silicon chip manufacturing to create a heterogeneous integrated CMOS-graphene sensor for accurate measurement of DA with high spatiotemporal resolution (Fig. 15.7.1).
15.7用于多巴胺检测的异构集成cmos -石墨烯传感器阵列
了解大脑中的多巴胺(DA)信号对于提高我们对药物成瘾、帕金森病和精神分裂症等病理性疾病的认识至关重要。目前,使用碳纤维(CMF)电极的快速扫描循环伏安法(FSCV)是神经科学实验室监测相(瞬态)DA释放浓度的首选方法。该方法提供亚秒级的时间分辨率和高特异性,因为感兴趣的信号发生在已知的电位。然而,现有的CMF电极体积庞大,限制了单点测量的空间分辨率。此外,它们是通过手工工艺生产的(例如在光学显微镜下切割CMFs),从而引入了显著的器件可变性[1]。最后,当使用长探针(3- 5cm)监测大型动物脑深部结构DA释放时,环境噪声严重降低了检测极限[1]。为了解决这些问题,我们将纳米制造技术与硅芯片制造技术相结合,创造了一种异构集成cmos -石墨烯传感器,用于高时空分辨率的DA精确测量(图15.7.1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信