Multimodal optical coherence microscopy, mechano-microscopy, and fluorescence microscopy for three-dimensional characterization of multicellular spheroids
Alireza Mowla, Matt S. Hepburn, Jiayue Li, L. Hirvonen, Danielle Vahala, Sebastian E Amos, Samuel Maher, Yu Suk Choi, B. Kennedy
{"title":"Multimodal optical coherence microscopy, mechano-microscopy, and fluorescence microscopy for three-dimensional characterization of multicellular spheroids","authors":"Alireza Mowla, Matt S. Hepburn, Jiayue Li, L. Hirvonen, Danielle Vahala, Sebastian E Amos, Samuel Maher, Yu Suk Choi, B. Kennedy","doi":"10.1117/12.2670830","DOIUrl":null,"url":null,"abstract":"Multicellular spheroids are a powerful model to study biochemical and biophysical interactions between cancer cells during growth and progression. However, little is known about how the biomechanics of the three-dimensional (3-D) microenvironment control cancer cell behaviors due to the lack of enabling technologies that can measure 3-D subcellular-scale elasticity and co-register it with the morphology and function of cells in a 3-D microenvironment. Here, we propose a multimodal imaging system that integrates an optical coherence microscopy-based subcellular mechano-microscopy system with a multi-channel confocal fluorescence microscopy system. Using this multimodal imaging system, we scan non-metastatic MCF7 breast cancer cell spheroids encapsulated in gelatin methacryloyl (GelMA) hydrogels and co-register 3-D intra-spheroid elasticity with subcellular structures, such as nuclei and cell membranes.","PeriodicalId":278089,"journal":{"name":"European Conference on Biomedical Optics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Biomedical Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2670830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Multicellular spheroids are a powerful model to study biochemical and biophysical interactions between cancer cells during growth and progression. However, little is known about how the biomechanics of the three-dimensional (3-D) microenvironment control cancer cell behaviors due to the lack of enabling technologies that can measure 3-D subcellular-scale elasticity and co-register it with the morphology and function of cells in a 3-D microenvironment. Here, we propose a multimodal imaging system that integrates an optical coherence microscopy-based subcellular mechano-microscopy system with a multi-channel confocal fluorescence microscopy system. Using this multimodal imaging system, we scan non-metastatic MCF7 breast cancer cell spheroids encapsulated in gelatin methacryloyl (GelMA) hydrogels and co-register 3-D intra-spheroid elasticity with subcellular structures, such as nuclei and cell membranes.