Experimental Study with Real-world Data for Android App Security Analysis using Machine Learning

Sankardas Roy, J. DeLoach, Yuping Li, Nic Herndon, Doina Caragea, Xinming Ou, Venkatesh Prasad Ranganath, Hongmin Li, Nicolais Guevara
{"title":"Experimental Study with Real-world Data for Android App Security Analysis using Machine Learning","authors":"Sankardas Roy, J. DeLoach, Yuping Li, Nic Herndon, Doina Caragea, Xinming Ou, Venkatesh Prasad Ranganath, Hongmin Li, Nicolais Guevara","doi":"10.1145/2818000.2818038","DOIUrl":null,"url":null,"abstract":"Although Machine Learning (ML) based approaches have shown promise for Android malware detection, a set of critical challenges remain unaddressed. Some of those challenges arise in relation to proper evaluation of the detection approach while others are related to the design decisions of the same. In this paper, we systematically study the impact of these challenges as a set of research questions (i.e., hypotheses). We design an experimentation framework where we can reliably vary several parameters while evaluating ML-based Android malware detection approaches. The results from the experiments are then used to answer the research questions. Meanwhile, we also demonstrate the impact of some challenges on some existing ML-based approaches. The large (market-scale) dataset (benign and malicious apps) we use in the above experiments represents the real-world Android app security analysis scale. We envision this study to encourage the practice of employing a better evaluation strategy and better designs of future ML-based approaches for Android malware detection.","PeriodicalId":338725,"journal":{"name":"Proceedings of the 31st Annual Computer Security Applications Conference","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 31st Annual Computer Security Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2818000.2818038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

Although Machine Learning (ML) based approaches have shown promise for Android malware detection, a set of critical challenges remain unaddressed. Some of those challenges arise in relation to proper evaluation of the detection approach while others are related to the design decisions of the same. In this paper, we systematically study the impact of these challenges as a set of research questions (i.e., hypotheses). We design an experimentation framework where we can reliably vary several parameters while evaluating ML-based Android malware detection approaches. The results from the experiments are then used to answer the research questions. Meanwhile, we also demonstrate the impact of some challenges on some existing ML-based approaches. The large (market-scale) dataset (benign and malicious apps) we use in the above experiments represents the real-world Android app security analysis scale. We envision this study to encourage the practice of employing a better evaluation strategy and better designs of future ML-based approaches for Android malware detection.
基于真实世界数据的机器学习Android应用安全分析实验研究
尽管基于机器学习(ML)的方法在Android恶意软件检测方面显示出了前景,但一系列关键挑战仍未得到解决。其中一些挑战与检测方法的适当评估有关,而另一些挑战则与检测方法的设计决策有关。在本文中,我们系统地研究了这些挑战的影响,作为一组研究问题(即假设)。我们设计了一个实验框架,在评估基于ml的Android恶意软件检测方法时,我们可以可靠地改变几个参数。然后用实验结果来回答研究问题。同时,我们也展示了一些挑战对一些现有的基于机器学习的方法的影响。我们在上述实验中使用的大型(市场规模)数据集(良性和恶意应用程序)代表了现实世界的Android应用程序安全分析规模。我们设想这项研究可以鼓励采用更好的评估策略和更好的设计未来基于机器学习的Android恶意软件检测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信