Asymptotic trajectory tracking for a robot manipulator using RBF neural network and adaptive bound on disturbances

V. Panwar
{"title":"Asymptotic trajectory tracking for a robot manipulator using RBF neural network and adaptive bound on disturbances","authors":"V. Panwar","doi":"10.1109/ICMET.2010.5598342","DOIUrl":null,"url":null,"abstract":"This paper presents a Lyapunov based approach to design an asymptotic trajectory tracking controller for robot manipulator using RBF neural network and an adaptive bound on disturbance terms. The controller is composed of computed torque type part, RBF network and an adaptive controller. The controller is able to learn the existing structured and unstructured uncertainties in the system in online manner. The RBF network learns the unknown part of the robot dynamics with no requirement of the offline training. The adaptive controller is used to estimate the unknown bounds on unstructured uncertainties and neural network reconstruction error. The overall system is proved to be asymptotically stable. Finally, the simulation results are performed on a Microbot type of manipulator to show the effectiveness of the controller.","PeriodicalId":415118,"journal":{"name":"2010 International Conference on Mechanical and Electrical Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Mechanical and Electrical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMET.2010.5598342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a Lyapunov based approach to design an asymptotic trajectory tracking controller for robot manipulator using RBF neural network and an adaptive bound on disturbance terms. The controller is composed of computed torque type part, RBF network and an adaptive controller. The controller is able to learn the existing structured and unstructured uncertainties in the system in online manner. The RBF network learns the unknown part of the robot dynamics with no requirement of the offline training. The adaptive controller is used to estimate the unknown bounds on unstructured uncertainties and neural network reconstruction error. The overall system is proved to be asymptotically stable. Finally, the simulation results are performed on a Microbot type of manipulator to show the effectiveness of the controller.
基于RBF神经网络和自适应扰动约束的机器人机械臂渐近轨迹跟踪
本文提出了一种基于李雅普诺夫的方法,利用RBF神经网络和扰动项的自适应界来设计机器人机械臂渐近轨迹跟踪控制器。该控制器由计算转矩型部分、RBF网络和自适应控制器组成。该控制器能够在线学习系统中存在的结构化和非结构化不确定性。RBF网络在不需要离线训练的情况下学习机器人动力学的未知部分。该自适应控制器用于估计非结构不确定性和神经网络重构误差的未知界。证明了整个系统是渐近稳定的。最后,对一个微型机器人类型的机械臂进行了仿真,验证了该控制器的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信