Wavelet estimation of the geographically and temporally weighted variable coefficient regression model

Zhaoxuan Sun, Rong Ke
{"title":"Wavelet estimation of the geographically and temporally weighted variable coefficient regression model","authors":"Zhaoxuan Sun, Rong Ke","doi":"10.1117/12.2679218","DOIUrl":null,"url":null,"abstract":"As one of the forms of semiparametric model, the variable coefficient regression model increases the flexibility and adaptability of the model by assuming that the regression coefficient in the linear regression model is the unknown of other independent variables, overcomes the \"dimensional disaster\" in the high-dimensional data model, and embeds the geographically and temporally weighted variable coefficient regression model (GTWRM). Based on the basic theory of wavelet estimation, this paper proposes a wavelet kernel coefficient estimation method for the model, and uses the wavelet kernel function to obtain the coefficient estimation.","PeriodicalId":301595,"journal":{"name":"Conference on Pure, Applied, and Computational Mathematics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Pure, Applied, and Computational Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2679218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As one of the forms of semiparametric model, the variable coefficient regression model increases the flexibility and adaptability of the model by assuming that the regression coefficient in the linear regression model is the unknown of other independent variables, overcomes the "dimensional disaster" in the high-dimensional data model, and embeds the geographically and temporally weighted variable coefficient regression model (GTWRM). Based on the basic theory of wavelet estimation, this paper proposes a wavelet kernel coefficient estimation method for the model, and uses the wavelet kernel function to obtain the coefficient estimation.
地理和时间加权变系数回归模型的小波估计
变系数回归模型作为半参数模型的一种形式,通过假设线性回归模型中的回归系数为其他自变量的未知量,增加了模型的灵活性和适应性,克服了高维数据模型中的“量纲灾难”,并嵌入了地理和时间加权变系数回归模型(GTWRM)。基于小波估计的基本理论,提出了模型的小波核系数估计方法,并利用小波核函数得到系数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信