Smart Selection of Useful Insights from Wearables

Allmin Pradhap Singh Susaiyah, Aki Härmä, Simone Balloccu, E. Reiter, M. Petkovic
{"title":"Smart Selection of Useful Insights from Wearables","authors":"Allmin Pradhap Singh Susaiyah, Aki Härmä, Simone Balloccu, E. Reiter, M. Petkovic","doi":"10.1109/ICASSPW59220.2023.10193140","DOIUrl":null,"url":null,"abstract":"The popularity of wearable-devices equipped with inertial measurement units (IMUs) and optical sensors has increased in recent years. These sensors provide valuable activity and heart-rate data that, when analysed across multiple users and over time, can offer profound insights into individual lifestyle habits. However, the high dimensionality of such data and user preference dynamics present significant challenges for mining useful insights. This paper proposes a novel approach that employs natural language processing to mine insights from wearable-data, utilising a neural network model that leverages end-to-end feedback from users. Results demonstrate that this approach effectively increased daily step counts among users, showcasing the potential of this method for optimising health and wellness outcomes.","PeriodicalId":158726,"journal":{"name":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSPW59220.2023.10193140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The popularity of wearable-devices equipped with inertial measurement units (IMUs) and optical sensors has increased in recent years. These sensors provide valuable activity and heart-rate data that, when analysed across multiple users and over time, can offer profound insights into individual lifestyle habits. However, the high dimensionality of such data and user preference dynamics present significant challenges for mining useful insights. This paper proposes a novel approach that employs natural language processing to mine insights from wearable-data, utilising a neural network model that leverages end-to-end feedback from users. Results demonstrate that this approach effectively increased daily step counts among users, showcasing the potential of this method for optimising health and wellness outcomes.
从可穿戴设备中选择有用的见解
近年来,配备惯性测量单元(imu)和光学传感器的可穿戴设备越来越受欢迎。这些传感器提供有价值的活动和心率数据,当对多个用户进行长期分析时,可以提供对个人生活习惯的深刻见解。然而,此类数据的高维性和用户偏好动态为挖掘有用的见解提出了重大挑战。本文提出了一种采用自然语言处理从可穿戴数据中挖掘见解的新方法,利用利用用户端到端反馈的神经网络模型。结果表明,这种方法有效地增加了用户的每日步数,展示了这种方法在优化健康和保健结果方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信