Enhanced Bagging (eBagging): A Novel Approach for Ensemble Learning

Goksu Tuysuzoglu, Derya Birant
{"title":"Enhanced Bagging (eBagging): A Novel Approach for Ensemble Learning","authors":"Goksu Tuysuzoglu, Derya Birant","doi":"10.34028/iajit/17/4/10","DOIUrl":null,"url":null,"abstract":"Bagging is one of the well-known ensemble learning methods, which combines several classifiers trained on different subsamples of the dataset. However, a drawback of bagging is its random selection, where the classification performance depends on chance to choose a suitable subset of training objects. This paper proposes a novel modified version of bagging, named enhanced Bagging (eBagging), which uses a new mechanism (error-based bootstrapping) when constructing training sets in order to cope with this problem. In the experimental setting, the proposed eBagging technique was tested on 33 well-known benchmark datasets and compared with both bagging, random forest and boosting techniques using well-known classification algorithms: Support Vector Machines (SVM), decision trees (C4.5), k-Nearest Neighbour (kNN) and Naive Bayes (NB). The results show that eBagging outperforms its counterparts by classifying the data points more accurately while reducing the training error.","PeriodicalId":161392,"journal":{"name":"The International Arab Journal of Information Technology","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Arab Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/17/4/10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Bagging is one of the well-known ensemble learning methods, which combines several classifiers trained on different subsamples of the dataset. However, a drawback of bagging is its random selection, where the classification performance depends on chance to choose a suitable subset of training objects. This paper proposes a novel modified version of bagging, named enhanced Bagging (eBagging), which uses a new mechanism (error-based bootstrapping) when constructing training sets in order to cope with this problem. In the experimental setting, the proposed eBagging technique was tested on 33 well-known benchmark datasets and compared with both bagging, random forest and boosting techniques using well-known classification algorithms: Support Vector Machines (SVM), decision trees (C4.5), k-Nearest Neighbour (kNN) and Naive Bayes (NB). The results show that eBagging outperforms its counterparts by classifying the data points more accurately while reducing the training error.
增强Bagging (eBagging):一种集成学习的新方法
Bagging是一种众所周知的集成学习方法,它结合了在数据集的不同子样本上训练的多个分类器。然而,bagging的一个缺点是它的随机选择,其中分类性能取决于选择合适的训练对象子集的机会。本文提出了一种改进的bagging算法,称为enhanced bagging (eBagging),它在构造训练集时使用了一种新的机制(基于错误的bootstrapping)来解决这个问题。在实验环境中,提出的eBagging技术在33个知名的基准数据集上进行了测试,并使用知名的分类算法(支持向量机(SVM)、决策树(C4.5)、k近邻(kNN)和朴素贝叶斯(NB))与bagging、随机森林和boosting技术进行了比较。结果表明,eBagging在减少训练误差的同时,对数据点的分类更加准确,优于同类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信