An AI-based approach to the prediction of water points quality indicators for schistosomiasis prevention

Teegwende Zougmore, B. Gueye, Sadouanouan Malo
{"title":"An AI-based approach to the prediction of water points quality indicators for schistosomiasis prevention","authors":"Teegwende Zougmore, B. Gueye, Sadouanouan Malo","doi":"10.1109/MNE3SD53781.2022.9723395","DOIUrl":null,"url":null,"abstract":"We investigate the simultaneous daily prediction of the pH and temperature of a water point using AI-based methods. These parameters are part of the physicochemical parameters of surface water favoring the reproduction of parasitic worms responsible for Schistosomiasis. Wavelet Artificial Neural Network (WANN), Long Short Term Memory (LSTM) and Support Vector Regression (SVR) are the AI-based methods employed to build models with fifteen months collected data. They are evaluated through two metrics: root mean square (RMSE) and mean absolute error (MAE). The results show that in overall three methods give acceptable RMSE which varies from 1.59 to 0.17. WANN model shows the best performance with a RMSE equals to 0.17 and a MAE equals to MAE 0.12 over LSTM and SVR ones in forecasting parameters values one day ahead based on their two previous days observations.","PeriodicalId":355503,"journal":{"name":"2022 IEEE Multi-conference on Natural and Engineering Sciences for Sahel's Sustainable Development (MNE3SD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Multi-conference on Natural and Engineering Sciences for Sahel's Sustainable Development (MNE3SD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MNE3SD53781.2022.9723395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the simultaneous daily prediction of the pH and temperature of a water point using AI-based methods. These parameters are part of the physicochemical parameters of surface water favoring the reproduction of parasitic worms responsible for Schistosomiasis. Wavelet Artificial Neural Network (WANN), Long Short Term Memory (LSTM) and Support Vector Regression (SVR) are the AI-based methods employed to build models with fifteen months collected data. They are evaluated through two metrics: root mean square (RMSE) and mean absolute error (MAE). The results show that in overall three methods give acceptable RMSE which varies from 1.59 to 0.17. WANN model shows the best performance with a RMSE equals to 0.17 and a MAE equals to MAE 0.12 over LSTM and SVR ones in forecasting parameters values one day ahead based on their two previous days observations.
基于人工智能的血吸虫病防治水点水质指标预测方法研究
我们研究了使用基于人工智能的方法对一个水点的pH值和温度的同时每日预测。这些参数是地表水的物理化学参数的一部分,有利于血吸虫病寄生虫的繁殖。小波人工神经网络(WANN)、长短期记忆(LSTM)和支持向量回归(SVR)是基于人工智能的方法,利用15个月的收集数据建立模型。它们通过两个指标进行评估:均方根(RMSE)和平均绝对误差(MAE)。结果表明,总体而言,三种方法给出了可接受的RMSE,范围在1.59 ~ 0.17之间。基于前两天的观测结果,在预测参数值时,WANN模型的RMSE为0.17,MAE为0.12,优于LSTM和SVR模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信