Joint decoding of multiple speech patterns for robust speech recognition

N.U. Nair, T. Sreenivas
{"title":"Joint decoding of multiple speech patterns for robust speech recognition","authors":"N.U. Nair, T. Sreenivas","doi":"10.1109/ASRU.2007.4430090","DOIUrl":null,"url":null,"abstract":"We are addressing a new problem of improving automatic speech recognition performance, given multiple utterances of patterns from the same class. We have formulated the problem of jointly decoding K multiple patterns given a single hidden Markov model. It is shown that such a solution is possible by aligning the K patterns using the proposed multi pattern dynamic time warping algorithm followed by the constrained multi pattern Viterbi algorithm. The new formulation is tested in the context of speaker independent isolated word recognition for both clean and noisy patterns. When 10 percent of speech is affected by a burst noise at -5 dB signal to noise ratio (local), it is shown that joint decoding using only two noisy patterns reduces the noisy speech recognition error rate to about 51 percent, when compared to the single pattern decoding using the Viterbi Algorithm. In contrast a simple maximization of individual pattern likelihoods, provides only about 7 percent reduction in error rate.","PeriodicalId":371729,"journal":{"name":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Workshop on Automatic Speech Recognition & Understanding (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2007.4430090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We are addressing a new problem of improving automatic speech recognition performance, given multiple utterances of patterns from the same class. We have formulated the problem of jointly decoding K multiple patterns given a single hidden Markov model. It is shown that such a solution is possible by aligning the K patterns using the proposed multi pattern dynamic time warping algorithm followed by the constrained multi pattern Viterbi algorithm. The new formulation is tested in the context of speaker independent isolated word recognition for both clean and noisy patterns. When 10 percent of speech is affected by a burst noise at -5 dB signal to noise ratio (local), it is shown that joint decoding using only two noisy patterns reduces the noisy speech recognition error rate to about 51 percent, when compared to the single pattern decoding using the Viterbi Algorithm. In contrast a simple maximization of individual pattern likelihoods, provides only about 7 percent reduction in error rate.
多语音模式联合解码的鲁棒语音识别
我们正在解决一个提高自动语音识别性能的新问题,给定来自同一类模式的多个话语。我们给出了给定单个隐马尔可夫模型的联合解码K多个模式的问题。通过使用所提出的多模式动态时间规整算法和约束多模式Viterbi算法对K模式进行对齐,证明了这种解决方案是可能的。在独立于说话人的孤立词识别环境下,测试了新公式对干净模式和有噪声模式的识别。当10%的语音受到-5 dB信噪比(本地)的突发噪声的影响时,与使用Viterbi算法的单模式解码相比,仅使用两种噪声模式的联合解码将噪声语音识别错误率降低到约51%。相比之下,单个模式可能性的简单最大化只提供了大约7%的错误率降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信