Decomposing Data Analytics in Fog Networks

Ta-Cheng Chang, Liang Zheng, M. Gorlatova, C. Gitau, Ching-Yao Huang, M. Chiang
{"title":"Decomposing Data Analytics in Fog Networks","authors":"Ta-Cheng Chang, Liang Zheng, M. Gorlatova, C. Gitau, Ching-Yao Huang, M. Chiang","doi":"10.1145/3131672.3136962","DOIUrl":null,"url":null,"abstract":"Fog computing, the distribution of computing resources closer to the end devices along the cloud-to-things continuum, is recently emerging as an architecture for scaling of the Internet of Things (IoT) sensor networking applications. Fog computing requires novel computing program decompositions for heterogeneous hierarchical settings. To evaluate these new decompositions, we designed, developed, and instrumented a fog computing testbed that includes cloud computing and computing gateway execution points collaborating to finish complex data analytics operations. In this interactive demonstration we present one fog-specific algorithmic decomposition we recently examined and adapted for fog computing: a multi-execution point linear regression decomposition that jointly optimizes operation latency, quality, and costs. The demonstration highlights the role fog computing can play in future sensor networking architectures, and highlights some of the challenges of creating computing program decompositions for these architectures. An annotated video of the demonstration is available at [5].","PeriodicalId":424262,"journal":{"name":"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 15th ACM Conference on Embedded Network Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3131672.3136962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Fog computing, the distribution of computing resources closer to the end devices along the cloud-to-things continuum, is recently emerging as an architecture for scaling of the Internet of Things (IoT) sensor networking applications. Fog computing requires novel computing program decompositions for heterogeneous hierarchical settings. To evaluate these new decompositions, we designed, developed, and instrumented a fog computing testbed that includes cloud computing and computing gateway execution points collaborating to finish complex data analytics operations. In this interactive demonstration we present one fog-specific algorithmic decomposition we recently examined and adapted for fog computing: a multi-execution point linear regression decomposition that jointly optimizes operation latency, quality, and costs. The demonstration highlights the role fog computing can play in future sensor networking architectures, and highlights some of the challenges of creating computing program decompositions for these architectures. An annotated video of the demonstration is available at [5].
雾网络中的分解数据分析
雾计算,即沿着云到物连续体更靠近终端设备的计算资源分布,最近作为扩展物联网(IoT)传感器网络应用的架构而出现。雾计算需要对异构层次设置进行新的计算程序分解。为了评估这些新的分解,我们设计、开发并检测了一个雾计算测试平台,其中包括云计算和计算网关执行点,它们协作完成复杂的数据分析操作。在这个交互式演示中,我们介绍了一种我们最近研究并适应于雾计算的特定于雾的算法分解:一种多执行点线性回归分解,它可以共同优化操作延迟、质量和成本。该演示强调了雾计算在未来传感器网络架构中可以发挥的作用,并强调了为这些架构创建计算程序分解的一些挑战。该演示的注释视频可在[5]找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信