INTELLIGENT MODEL FOR MAXIMIZING THE GENERATED POWER OF A RECONFIGURABLE SOLAR POWER PLANT

Е. А. Энгель, Н. Е. Энгель Энгель
{"title":"INTELLIGENT MODEL FOR MAXIMIZING THE GENERATED POWER OF A RECONFIGURABLE SOLAR POWER PLANT","authors":"Е. А. Энгель, Н. Е. Энгель Энгель","doi":"10.35266/1999-7604-2023-1-52-58","DOIUrl":null,"url":null,"abstract":"The global maximum power point tracking of a solar power plant in partial shading demands a global optimization. Standard algorithms for tracking of maximum power point do not provide for a maximum global power of a solar power plant during real time mode due to low convergence. A model of aximizing the generated power of a reconfigurable solar power plant was developed as a modified fuzzy deep neural network based on the modified quantum-behaved particle swarm optimizer. This neural network consists of the following: convolutional units, recurrent neural networks, and fuzzy units. By processing the sensor signals and images of the solar array, the set modified fuzzy deep neural network generates a reference voltage and an electrical interconnection matrix of the parallel-serial solar array, maximizing its power under non-uniform insolation. The neural network demonstrates such advantages as robustness, better efficiency, and tracking speed in comparison with the model of a reconfigurable solar power plant based on the particle swarm optimization.","PeriodicalId":431138,"journal":{"name":"Proceedings in Cybernetics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings in Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35266/1999-7604-2023-1-52-58","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The global maximum power point tracking of a solar power plant in partial shading demands a global optimization. Standard algorithms for tracking of maximum power point do not provide for a maximum global power of a solar power plant during real time mode due to low convergence. A model of aximizing the generated power of a reconfigurable solar power plant was developed as a modified fuzzy deep neural network based on the modified quantum-behaved particle swarm optimizer. This neural network consists of the following: convolutional units, recurrent neural networks, and fuzzy units. By processing the sensor signals and images of the solar array, the set modified fuzzy deep neural network generates a reference voltage and an electrical interconnection matrix of the parallel-serial solar array, maximizing its power under non-uniform insolation. The neural network demonstrates such advantages as robustness, better efficiency, and tracking speed in comparison with the model of a reconfigurable solar power plant based on the particle swarm optimization.
可重构太阳能电站发电功率最大化的智能模型
局部遮阳环境下太阳能电站的全局最大功率点跟踪需要全局优化。最大功率点跟踪的标准算法由于收敛性低,不能提供实时模式下太阳能电站的全局最大功率。提出了一种基于改进量子粒子群优化器的改进模糊深度神经网络的可重构太阳能电站发电功率最大化模型。该神经网络由以下部分组成:卷积单元、循环神经网络和模糊单元。该改进模糊深度神经网络通过对太阳能电池阵的传感器信号和图像进行处理,生成并联-串联太阳能电池阵的参考电压和电互连矩阵,使其在不均匀日照下的功率最大化。与基于粒子群优化的可重构太阳能电站模型相比,神经网络具有鲁棒性好、效率高、跟踪速度快等优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信