The algebraic Bethe Ansatz and combinatorial trees

Ricardo Soares Vieira, A. Lima-Santos
{"title":"The algebraic Bethe Ansatz and combinatorial trees","authors":"Ricardo Soares Vieira, A. Lima-Santos","doi":"10.1093/INTEGR/XYZ002","DOIUrl":null,"url":null,"abstract":"We present in this paper a comprehensive introduction to the algebraic Bethe Ansatz, taking as examples the six-vertex model with periodic and non-periodic boundary conditions. We propose a diagrammatic representation of the commutation relations used in the algebraic Bethe Ansatz, so that the action of the transfer matrix in the nth excited state gives place to labeled combinatorial trees. The analysis of these combinatorial trees provides in a straightforward way the eigenvalues and eigenstates of the transfer matrix, as well as the respective Bethe Ansatz equations. Several identities between the R-matrix elements can also be derived from the symmetry of these diagrams regarding the permutation of their labels. This combinatorial approach gives some insights about how the algebraic Bethe Ansatz works, which can be valuable for non-experts readers.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"s3-23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/INTEGR/XYZ002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present in this paper a comprehensive introduction to the algebraic Bethe Ansatz, taking as examples the six-vertex model with periodic and non-periodic boundary conditions. We propose a diagrammatic representation of the commutation relations used in the algebraic Bethe Ansatz, so that the action of the transfer matrix in the nth excited state gives place to labeled combinatorial trees. The analysis of these combinatorial trees provides in a straightforward way the eigenvalues and eigenstates of the transfer matrix, as well as the respective Bethe Ansatz equations. Several identities between the R-matrix elements can also be derived from the symmetry of these diagrams regarding the permutation of their labels. This combinatorial approach gives some insights about how the algebraic Bethe Ansatz works, which can be valuable for non-experts readers.
代数Bethe Ansatz与组合树
本文以具有周期边界条件和非周期边界条件的六顶点模型为例,全面介绍了代数Bethe Ansatz。我们提出了一种用于代数Bethe Ansatz的交换关系的图解表示,使转移矩阵在第n激发态的作用让位给标记组合树。对这些组合树的分析以一种直接的方式提供了传递矩阵的特征值和特征态,以及相应的Bethe Ansatz方程。r -矩阵元素之间的几个恒等式也可以从这些图的对称中得到。这种组合方法提供了一些关于代数Bethe Ansatz如何工作的见解,这对于非专家读者可能很有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信