{"title":"Identifying temporal trajectories of association rules with fuzzy descriptions","authors":"M. Steinbrecher, R. Kruse","doi":"10.1109/NAFIPS.2008.4531243","DOIUrl":null,"url":null,"abstract":"We propose a novel postprocessing technique for identifying sets of association rules that expose a user-specified temporal development. We explicitly do not use a learning approach that requires the database to be subdivided into time frames. Instead, a global probabilistic learning method is used for induction. The resulting association rules are then matched against a set of fuzzy concepts. These concepts comprise user-built linguistic propositions that describe the evolution of rules that might be considered interesting. The proposed technique is evaluated on a real-world data set. To present the results, we introduce a modified rule visualization along the way that is an extension of our previous work.","PeriodicalId":430770,"journal":{"name":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2008.4531243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We propose a novel postprocessing technique for identifying sets of association rules that expose a user-specified temporal development. We explicitly do not use a learning approach that requires the database to be subdivided into time frames. Instead, a global probabilistic learning method is used for induction. The resulting association rules are then matched against a set of fuzzy concepts. These concepts comprise user-built linguistic propositions that describe the evolution of rules that might be considered interesting. The proposed technique is evaluated on a real-world data set. To present the results, we introduce a modified rule visualization along the way that is an extension of our previous work.