Identifying temporal trajectories of association rules with fuzzy descriptions

M. Steinbrecher, R. Kruse
{"title":"Identifying temporal trajectories of association rules with fuzzy descriptions","authors":"M. Steinbrecher, R. Kruse","doi":"10.1109/NAFIPS.2008.4531243","DOIUrl":null,"url":null,"abstract":"We propose a novel postprocessing technique for identifying sets of association rules that expose a user-specified temporal development. We explicitly do not use a learning approach that requires the database to be subdivided into time frames. Instead, a global probabilistic learning method is used for induction. The resulting association rules are then matched against a set of fuzzy concepts. These concepts comprise user-built linguistic propositions that describe the evolution of rules that might be considered interesting. The proposed technique is evaluated on a real-world data set. To present the results, we introduce a modified rule visualization along the way that is an extension of our previous work.","PeriodicalId":430770,"journal":{"name":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2008.4531243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We propose a novel postprocessing technique for identifying sets of association rules that expose a user-specified temporal development. We explicitly do not use a learning approach that requires the database to be subdivided into time frames. Instead, a global probabilistic learning method is used for induction. The resulting association rules are then matched against a set of fuzzy concepts. These concepts comprise user-built linguistic propositions that describe the evolution of rules that might be considered interesting. The proposed technique is evaluated on a real-world data set. To present the results, we introduce a modified rule visualization along the way that is an extension of our previous work.
用模糊描述识别关联规则的时间轨迹
我们提出了一种新的后处理技术,用于识别暴露用户指定时间发展的关联规则集。我们明确地不使用需要将数据库细分为时间框架的学习方法。相反,采用全局概率学习方法进行归纳。然后将生成的关联规则与一组模糊概念进行匹配。这些概念包括用户构建的语言命题,这些命题描述了可能被认为有趣的规则的演变。在实际数据集上对所提出的技术进行了评估。为了显示结果,我们在此过程中引入了一个修改后的规则可视化,这是我们之前工作的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信