Closeness of solutions and averaging for nonlinear systems on Riemannian manifolds

F. Taringoo, D. Nešić, Y. Tan, P. Dower
{"title":"Closeness of solutions and averaging for nonlinear systems on Riemannian manifolds","authors":"F. Taringoo, D. Nešić, Y. Tan, P. Dower","doi":"10.1109/AUCC.2013.6697246","DOIUrl":null,"url":null,"abstract":"An averaging result for periodic dynamical systems evolving on Euclidean spaces is extended to those evolving on (differentiable) Riemannian manifolds. Using standard tools from differential geometry, a perturbation result for time-varying dynamical systems is developed that measures closeness of trajectories via a suitable metric on a finite time horizon. This perturbation result is then extended to bound excursions in the trajectories of periodic dynamical systems from those of their respective averages, on an infinite time horizon, yielding the specified averaging result. Some simple examples further illustrating this result are also presented.","PeriodicalId":177490,"journal":{"name":"2013 Australian Control Conference","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Australian Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AUCC.2013.6697246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An averaging result for periodic dynamical systems evolving on Euclidean spaces is extended to those evolving on (differentiable) Riemannian manifolds. Using standard tools from differential geometry, a perturbation result for time-varying dynamical systems is developed that measures closeness of trajectories via a suitable metric on a finite time horizon. This perturbation result is then extended to bound excursions in the trajectories of periodic dynamical systems from those of their respective averages, on an infinite time horizon, yielding the specified averaging result. Some simple examples further illustrating this result are also presented.
黎曼流形上非线性系统解的接近性与平均
将在欧几里德空间上演化的周期动力系统的平均结果推广到在(可微)黎曼流形上演化的周期动力系统。利用微分几何的标准工具,开发了时变动力系统的摄动结果,通过在有限时间范围内通过合适的度量来测量轨迹的紧密性。然后将该扰动结果从周期动力系统各自的平均值扩展到周期动力系统在无限时间范围内的轨迹上的有界漂移,从而得到指定的平均结果。还给出了一些简单的例子来进一步说明这一结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信