Robust arrhythmia classifier using wavelet transform and support vector machine classification

Nyoke Goon Chia, Y. Hau, M. N. Jamaludin
{"title":"Robust arrhythmia classifier using wavelet transform and support vector machine classification","authors":"Nyoke Goon Chia, Y. Hau, M. N. Jamaludin","doi":"10.1109/CSPA.2017.8064959","DOIUrl":null,"url":null,"abstract":"The Electrocardiogram (ECG) is the most widely used signal in clinical practice for the assessment of cardiac condition. This paper presents a robust arrhythmia classifier based on the combination of wavelet transform and timing features, as well as support vector machine classification technique. The proposed technique is able to detect a total of 11 different types of arrhythmia. Results show that the average classification accuracy is up to 87.93% using the 46 MIT-BIH offline ECG database as the testing dataset. A user-friendly Graphical User Interface (GUI) is developed to ease the layman users. This proposed tool aims to reduce the workload of cardiac vascular technologist, medical staff and physicians as assisting cardiac monitoring equipment.","PeriodicalId":445522,"journal":{"name":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2017.8064959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Electrocardiogram (ECG) is the most widely used signal in clinical practice for the assessment of cardiac condition. This paper presents a robust arrhythmia classifier based on the combination of wavelet transform and timing features, as well as support vector machine classification technique. The proposed technique is able to detect a total of 11 different types of arrhythmia. Results show that the average classification accuracy is up to 87.93% using the 46 MIT-BIH offline ECG database as the testing dataset. A user-friendly Graphical User Interface (GUI) is developed to ease the layman users. This proposed tool aims to reduce the workload of cardiac vascular technologist, medical staff and physicians as assisting cardiac monitoring equipment.
基于小波变换和支持向量机分类的鲁棒心律失常分类器
心电图(Electrocardiogram, ECG)是临床上应用最广泛的评估心脏状况的信号。本文提出了一种基于小波变换与时序特征相结合的鲁棒心律失常分类器,并结合支持向量机分类技术。所提出的技术能够检测到总共11种不同类型的心律失常。结果表明,使用46个MIT-BIH离线心电数据库作为测试数据集,平均分类准确率可达87.93%。一个友好的图形用户界面(GUI)的开发,以方便外行用户。该工具旨在减少心血管技术人员、医务人员和医生作为辅助心脏监测设备的工作量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信