A Scalable Generator for Massive MIMO Baseband Processing Systems with Beamspace Channel Estimation

Yue Dai, Harrison Liew, M. Rasekh, Seyed Hadi Mirfarshbafan, Alexandra Gallyas-Sanhueza, James Dunn, Upamanyu Madhow, Christoph Studer, B. Nikolić
{"title":"A Scalable Generator for Massive MIMO Baseband Processing Systems with Beamspace Channel Estimation","authors":"Yue Dai, Harrison Liew, M. Rasekh, Seyed Hadi Mirfarshbafan, Alexandra Gallyas-Sanhueza, James Dunn, Upamanyu Madhow, Christoph Studer, B. Nikolić","doi":"10.1109/SiPS52927.2021.00040","DOIUrl":null,"url":null,"abstract":"This paper describes a scalable, highly portable, and energy-efficient generator for massive multiple-input multiple-output (MIMO) baseband processing systems. This generator is written in Chisel and produces hardware instances for a scalable massive MIMO system employing distributed processing. The generator is parameterized in both the MIMO system and hardware datapath elements. Coupled with a Python-based system simulator, the generator can be adapted to implement other baseband processing algorithms. To demonstrate the adaptability, several generator instances with different parameter values are evaluated by FPGA emulation. In addition, a beamspace calibration and channel denoising algorithm are applied to further improve the channel estimation performance. With those algorithms, the error vector magnitude can be reduced by up 9.2%.","PeriodicalId":103894,"journal":{"name":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","volume":"5 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Workshop on Signal Processing Systems (SiPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SiPS52927.2021.00040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes a scalable, highly portable, and energy-efficient generator for massive multiple-input multiple-output (MIMO) baseband processing systems. This generator is written in Chisel and produces hardware instances for a scalable massive MIMO system employing distributed processing. The generator is parameterized in both the MIMO system and hardware datapath elements. Coupled with a Python-based system simulator, the generator can be adapted to implement other baseband processing algorithms. To demonstrate the adaptability, several generator instances with different parameter values are evaluated by FPGA emulation. In addition, a beamspace calibration and channel denoising algorithm are applied to further improve the channel estimation performance. With those algorithms, the error vector magnitude can be reduced by up 9.2%.
基于波束空间信道估计的大规模MIMO基带处理系统的可扩展发生器
本文介绍了一种用于大规模多输入多输出(MIMO)基带处理系统的可扩展、高度便携和节能的发电机。该生成器是用Chisel编写的,并为采用分布式处理的可扩展大规模MIMO系统生成硬件实例。该发生器在MIMO系统和硬件数据路径元素中都是参数化的。与基于python的系统模拟器相结合,该生成器可以适应实现其他基带处理算法。为了验证该算法的自适应性,通过FPGA仿真对多个具有不同参数值的生成器实例进行了评估。此外,采用波束空间标定和信道去噪算法进一步提高了信道估计性能。采用该算法,误差矢量幅度可降低9.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信