Iris Presentation Attack Detection by Attention-based and Deep Pixel-wise Binary Supervision Network

Meiling Fang, N. Damer, F. Boutros, Florian Kirchbuchner, Arjan Kuijper
{"title":"Iris Presentation Attack Detection by Attention-based and Deep Pixel-wise Binary Supervision Network","authors":"Meiling Fang, N. Damer, F. Boutros, Florian Kirchbuchner, Arjan Kuijper","doi":"10.1109/IJCB52358.2021.9484343","DOIUrl":null,"url":null,"abstract":"Iris presentation attack detection (PAD) plays a vital role in iris recognition systems. Most existing CNN-based iris PAD solutions 1) perform only binary label supervision during the training of CNNs, serving global information learning but weakening the capture of local discriminative features, 2) prefer the stacked deeper convolutions or expert-designed networks, raising the risk of overfitting, 3) fuse multiple PAD systems or various types of features, increasing difficulty for deployment on mobile devices. Hence, we propose a novel attention-based deep pixel-wise bi-nary supervision (A-PBS) method. Pixel-wise supervision is first able to capture the fine-grained pixel/patch-level cues. Then, the attention mechanism guides the network to automatically find regions that most contribute to an accurate PAD decision. Extensive experiments are performed on LivDet-Iris 2017 and three other publicly available databases to show the effectiveness and robustness of proposed A-PBS methods. For instance, the A-PBS model achieves an HTER of 6.50% on the IIITD-WVU database outperforming state-of-the-art methods.","PeriodicalId":175984,"journal":{"name":"2021 IEEE International Joint Conference on Biometrics (IJCB)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCB52358.2021.9484343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Iris presentation attack detection (PAD) plays a vital role in iris recognition systems. Most existing CNN-based iris PAD solutions 1) perform only binary label supervision during the training of CNNs, serving global information learning but weakening the capture of local discriminative features, 2) prefer the stacked deeper convolutions or expert-designed networks, raising the risk of overfitting, 3) fuse multiple PAD systems or various types of features, increasing difficulty for deployment on mobile devices. Hence, we propose a novel attention-based deep pixel-wise bi-nary supervision (A-PBS) method. Pixel-wise supervision is first able to capture the fine-grained pixel/patch-level cues. Then, the attention mechanism guides the network to automatically find regions that most contribute to an accurate PAD decision. Extensive experiments are performed on LivDet-Iris 2017 and three other publicly available databases to show the effectiveness and robustness of proposed A-PBS methods. For instance, the A-PBS model achieves an HTER of 6.50% on the IIITD-WVU database outperforming state-of-the-art methods.
基于注意力和深度逐像素二值监督网络的虹膜表示攻击检测
虹膜表示攻击检测(PAD)在虹膜识别系统中起着至关重要的作用。大多数现有的基于cnn的虹膜PAD解决方案1)在cnn训练过程中只进行二元标签监督,服务于全局信息学习,但削弱了局部判别特征的捕获;2)更倾向于堆叠深度卷积或专家设计的网络,增加了过拟合的风险;3)融合多个PAD系统或各种类型的特征,增加了在移动设备上部署的难度。因此,我们提出了一种新的基于注意力的深度逐像素二元监督(a - pbs)方法。像素级监督首先能够捕获细粒度的像素/补丁级线索。然后,注意力机制引导网络自动找到最有助于准确PAD决策的区域。在livet - iris 2017和其他三个公开可用的数据库上进行了大量实验,以证明所提出的A-PBS方法的有效性和鲁棒性。例如,A-PBS模型在IIITD-WVU数据库上实现了6.50%的HTER,优于最先进的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信