Efficient domain adaptation for painting theme recognition

Mihai-Sorin Badea, C. Florea, L. Florea, C. Vertan
{"title":"Efficient domain adaptation for painting theme recognition","authors":"Mihai-Sorin Badea, C. Florea, L. Florea, C. Vertan","doi":"10.1109/ISSCS.2017.8034907","DOIUrl":null,"url":null,"abstract":"In this paper we approach the problem of scene recognition in paintings. We tackle this task with the aid of Convolutional Neural Networks and a large database consisting of around 80,000 paintings. The main purpose is to identify an efficient method to enlarge the database by domain transfer from photographic content to artistic content. Thus, we discuss the practical capabilities of a recent method of domain transfer from photographs to paintings while augmenting the employed database and aid the learning of difficult styles. We propose a set of improvements to increase the feasibility of the domain transfer in the context of large databases.","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we approach the problem of scene recognition in paintings. We tackle this task with the aid of Convolutional Neural Networks and a large database consisting of around 80,000 paintings. The main purpose is to identify an efficient method to enlarge the database by domain transfer from photographic content to artistic content. Thus, we discuss the practical capabilities of a recent method of domain transfer from photographs to paintings while augmenting the employed database and aid the learning of difficult styles. We propose a set of improvements to increase the feasibility of the domain transfer in the context of large databases.
基于领域自适应的绘画主题识别
本文主要研究绘画中的场景识别问题。我们借助卷积神经网络和一个由大约8万幅画作组成的大型数据库来解决这个问题。主要目的是寻找一种通过从摄影内容到艺术内容的领域转移来扩大数据库的有效方法。因此,我们讨论了最近从照片到绘画的领域转移方法的实际能力,同时增加了所使用的数据库并帮助学习困难的风格。我们提出了一组改进,以提高在大型数据库环境下域转移的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信