Clutter reduction and detection of landmine objects in ground penetrating radar data using singular value decomposition (SVD)

F. Abujarad, G. Nadim, A. Omar
{"title":"Clutter reduction and detection of landmine objects in ground penetrating radar data using singular value decomposition (SVD)","authors":"F. Abujarad, G. Nadim, A. Omar","doi":"10.1109/AGPR.2005.1487840","DOIUrl":null,"url":null,"abstract":"This paper demonstrates that the Singular Value Decomposition (SVD) B an efficient method for the reduction of clutter in Stepped-Frequency Ground Penetrating Radar (SFGPR) data. In this contribution, two algorithms have been applied for clutter reduction. In the first algorithm, SVD has been applied after mean subtraction and the target has been estimated, The suggestion of applying a threshold and excogitate a new formula to calculate the threshold has been presented on the first algorithm. Signal-to-Noise ratio (SNR) has been analyzed. In the second algorithm, a background estimate has been done directly using SVD. The technique has been experimentally validated using PMN landmine at different depths.","PeriodicalId":272364,"journal":{"name":"Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar, 2005. IWAGPR 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"61","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Workshop on Advanced Ground Penetrating Radar, 2005. IWAGPR 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AGPR.2005.1487840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 61

Abstract

This paper demonstrates that the Singular Value Decomposition (SVD) B an efficient method for the reduction of clutter in Stepped-Frequency Ground Penetrating Radar (SFGPR) data. In this contribution, two algorithms have been applied for clutter reduction. In the first algorithm, SVD has been applied after mean subtraction and the target has been estimated, The suggestion of applying a threshold and excogitate a new formula to calculate the threshold has been presented on the first algorithm. Signal-to-Noise ratio (SNR) has been analyzed. In the second algorithm, a background estimate has been done directly using SVD. The technique has been experimentally validated using PMN landmine at different depths.
基于奇异值分解(SVD)的探地雷达数据杂波抑制与地雷物检测
本文论证了奇异值分解(SVD) B是一种有效的对步进频率探地雷达(SFGPR)数据进行杂波抑制的方法。在这篇文章中,两种算法被用于杂波减少。在第一种算法中,在均值相减后应用奇异值分解对目标进行估计,在第一种算法中提出了应用阈值并研究新的阈值计算公式的建议。分析了信噪比(SNR)。在第二种算法中,直接使用奇异值分解进行背景估计。该技术已在不同深度的PMN地雷上进行了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信