Flexible Selection for Efficient Latin Hypercube Design Optimization Method in Uncertainty Quantification

Dong Liu, Jian Shi, Chao Zhang, Di Liu
{"title":"Flexible Selection for Efficient Latin Hypercube Design Optimization Method in Uncertainty Quantification","authors":"Dong Liu, Jian Shi, Chao Zhang, Di Liu","doi":"10.1109/isssr58837.2023.00048","DOIUrl":null,"url":null,"abstract":"Design of Experient is an integral part of uncertainty quantification. Latin hypercube designs, including methods such as maximizing distance LHDs and maximizing projection LHDs, are widely used for quantifying and computing engineering uncertainties. In particular, it is challenging to construct efficient designs for large designs with high parameter dimensionality and large data volume. In the current literature, various optimization tools exist to select the optimal LHDs, and each method has its advantages and disadvantages. In this paper, we combine commonly used optimization methods with different space-filling criteria to analyze the effects of parameter dimensionality, data volume, and algorithm hyperparameters for solving the problem of flexibility selection of optimization algorithms. The results of this paper can be used as a guide for the selection of optimization algorithms for experimental design aspects of practical engineering applications.","PeriodicalId":185173,"journal":{"name":"2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Symposium on System Security, Safety, and Reliability (ISSSR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/isssr58837.2023.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Design of Experient is an integral part of uncertainty quantification. Latin hypercube designs, including methods such as maximizing distance LHDs and maximizing projection LHDs, are widely used for quantifying and computing engineering uncertainties. In particular, it is challenging to construct efficient designs for large designs with high parameter dimensionality and large data volume. In the current literature, various optimization tools exist to select the optimal LHDs, and each method has its advantages and disadvantages. In this paper, we combine commonly used optimization methods with different space-filling criteria to analyze the effects of parameter dimensionality, data volume, and algorithm hyperparameters for solving the problem of flexibility selection of optimization algorithms. The results of this paper can be used as a guide for the selection of optimization algorithms for experimental design aspects of practical engineering applications.
不确定性量化中高效拉丁超立方体设计优化方法的灵活选择
实验设计是不确定度量化的重要组成部分。拉丁超立方体设计,包括最大距离lhd和最大投影lhd等方法,广泛用于量化和计算工程不确定性。特别是对于具有高参数维数和大数据量的大型设计,如何构建高效的设计是一个挑战。在目前的文献中,存在各种优化工具来选择最优的lhd,每种方法都有其优点和缺点。本文将常用的优化方法与不同的空间填充准则相结合,分析参数维数、数据量和算法超参数对优化算法灵活性选择问题的影响。本文的研究结果可为实际工程中实验设计方面优化算法的选择提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信