Taming Extreme Heterogeneity via Machine Learning based Design of Autonomous Manycore Systems

P. Bogdan, Fan Chen, Aryan Deshwal, J. Doppa, Biresh Kumar Joardar, H. Li, Shahin Nazarian, Linghao Song, Yao Xiao
{"title":"Taming Extreme Heterogeneity via Machine Learning based Design of Autonomous Manycore Systems","authors":"P. Bogdan, Fan Chen, Aryan Deshwal, J. Doppa, Biresh Kumar Joardar, H. Li, Shahin Nazarian, Linghao Song, Yao Xiao","doi":"10.1145/3349567.3357376","DOIUrl":null,"url":null,"abstract":"To avoid rewriting software code for new computer architectures and to take advantage of the extreme heterogeneous processing, communication and storage technologies, there is an urgent need for determining the right amount and type of specialization while making a heterogeneous system as programmable and flexible as possible. To enable both programmability and flexibility in the heterogeneous computing era, we propose a novel complex network inspired model of computation and efficient optimization algorithms for determining the optimal degree of parallelization from old software code. This mathematical framework allows us to determine the required number and type of processing elements, the amount and type of deep memory hierarchy, and the degree of reconfiguration for the communication infrastructure, thus opening new avenues to performance and energy efficiency. Our framework enables heterogeneous manycore systems to autonomously adapt from traditional switching techniques to network coding strategies in order to sustain on-chip communication in the order of terabytes. While this new programming model enables the design of self-programmable autonomous heterogeneous manycore systems, a number of open challenges will be discussed.","PeriodicalId":194982,"journal":{"name":"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349567.3357376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

To avoid rewriting software code for new computer architectures and to take advantage of the extreme heterogeneous processing, communication and storage technologies, there is an urgent need for determining the right amount and type of specialization while making a heterogeneous system as programmable and flexible as possible. To enable both programmability and flexibility in the heterogeneous computing era, we propose a novel complex network inspired model of computation and efficient optimization algorithms for determining the optimal degree of parallelization from old software code. This mathematical framework allows us to determine the required number and type of processing elements, the amount and type of deep memory hierarchy, and the degree of reconfiguration for the communication infrastructure, thus opening new avenues to performance and energy efficiency. Our framework enables heterogeneous manycore systems to autonomously adapt from traditional switching techniques to network coding strategies in order to sustain on-chip communication in the order of terabytes. While this new programming model enables the design of self-programmable autonomous heterogeneous manycore systems, a number of open challenges will be discussed.
基于机器学习的自治多核系统设计驯服极端异质性
为了避免为新的计算机体系结构重写软件代码,并利用极端异构的处理、通信和存储技术,在使异构系统尽可能可编程和灵活的同时,迫切需要确定适当的专门化数量和类型。为了在异构计算时代实现可编程性和灵活性,我们提出了一种新的复杂网络启发的计算模型和有效的优化算法,用于确定旧软件代码的最佳并行化程度。这个数学框架使我们能够确定所需的处理元素的数量和类型,深度存储器层次结构的数量和类型,以及通信基础设施的重新配置程度,从而为性能和能源效率开辟了新的途径。我们的框架使异构多核系统能够自主地从传统的交换技术适应网络编码策略,以维持兆兆字节级的片上通信。虽然这种新的编程模型使自编程自治异构多核系统的设计成为可能,但我们将讨论一些开放的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信