Fuzzy logic rules for mapping sensor data to robot control

Jianwei Zhang, F. Wille, A. Knoll
{"title":"Fuzzy logic rules for mapping sensor data to robot control","authors":"Jianwei Zhang, F. Wille, A. Knoll","doi":"10.1109/EURBOT.1996.551878","DOIUrl":null,"url":null,"abstract":"We use fuzzy logic rules to directly map sensor data to robot control outputs by classifying a set of typical subtasks, such as \"path tracking\", \"local collision avoidance\", \"contour tracking\", \"situation evaluation\", etc. With the help of existing heuristics, the decision-making process for each subtask can be modelled and represented with \"IF-THEN\" rules. The underlying concepts of mapping with fuzzy logic rules are briefly explained by considering the proximity sensors, the control of speed and steering angle of a mobile robot. The development of these fuzzy rules is explained, typical rules for dealing with various motion situations are listed. The modularly developed fuzzy rule bases can be integrated to realise task-level programming and the exploration task. Experiments with the mobile robot validate this concept.","PeriodicalId":136786,"journal":{"name":"Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURBOT.1996.551878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

We use fuzzy logic rules to directly map sensor data to robot control outputs by classifying a set of typical subtasks, such as "path tracking", "local collision avoidance", "contour tracking", "situation evaluation", etc. With the help of existing heuristics, the decision-making process for each subtask can be modelled and represented with "IF-THEN" rules. The underlying concepts of mapping with fuzzy logic rules are briefly explained by considering the proximity sensors, the control of speed and steering angle of a mobile robot. The development of these fuzzy rules is explained, typical rules for dealing with various motion situations are listed. The modularly developed fuzzy rule bases can be integrated to realise task-level programming and the exploration task. Experiments with the mobile robot validate this concept.
将传感器数据映射到机器人控制的模糊逻辑规则
我们通过分类一组典型的子任务,如“路径跟踪”、“局部避碰”、“轮廓跟踪”、“态势评估”等,利用模糊逻辑规则将传感器数据直接映射到机器人控制输出。利用现有的启发式方法,对每个子任务的决策过程进行建模,并用“IF-THEN”规则表示。通过考虑移动机器人的接近传感器、速度控制和转向角控制,简要解释了模糊逻辑规则映射的基本概念。阐述了这些模糊规则的发展,列举了处理各种运动情况的典型规则。模块化开发的模糊规则库可以集成在一起,实现任务级规划和探索任务。移动机器人的实验验证了这一概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信