Optimizing Heterogeneous Task Allocation for Edge Compute Micro Clusters Using PSO Metaheuristic

Yousef Alhaizaey, Jeremy Singer, A. L. Michala
{"title":"Optimizing Heterogeneous Task Allocation for Edge Compute Micro Clusters Using PSO Metaheuristic","authors":"Yousef Alhaizaey, Jeremy Singer, A. L. Michala","doi":"10.1109/FMEC57183.2022.10062755","DOIUrl":null,"url":null,"abstract":"Optimised task allocation is essential for efficient and effective edge computing; however, task allocation differs in edge systems compared to the powerful centralised cloud data centres, given the limited resource capacities in edge and the strict QoS requirements of many innovative Internet of Things (IoT) applications. This paper aims to optimise heterogeneous task allocation specifically for edge micro-cluster platforms. We extend our previous work on optimising task allocation for micro-clusters by presenting a linear-based model and propose a metaheuristic Particle Swarm Optimisation (PSO) technique to minimise the makespan time and the allocation overhead time of heterogeneous workloads in batch execution. We present a comparative performance evaluation of metaheuristic PSO, mixed-integer programming (MIP) and randomised allocation based on the computation overhead time and the quality of the solutions. Our results show a crossover implying that mixed-integer programming is efficient for small-scale clusters, whereas PSO scales better and provides near-optimal solutions for larger-scale micro-clusters.","PeriodicalId":129184,"journal":{"name":"2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Seventh International Conference on Fog and Mobile Edge Computing (FMEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FMEC57183.2022.10062755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Optimised task allocation is essential for efficient and effective edge computing; however, task allocation differs in edge systems compared to the powerful centralised cloud data centres, given the limited resource capacities in edge and the strict QoS requirements of many innovative Internet of Things (IoT) applications. This paper aims to optimise heterogeneous task allocation specifically for edge micro-cluster platforms. We extend our previous work on optimising task allocation for micro-clusters by presenting a linear-based model and propose a metaheuristic Particle Swarm Optimisation (PSO) technique to minimise the makespan time and the allocation overhead time of heterogeneous workloads in batch execution. We present a comparative performance evaluation of metaheuristic PSO, mixed-integer programming (MIP) and randomised allocation based on the computation overhead time and the quality of the solutions. Our results show a crossover implying that mixed-integer programming is efficient for small-scale clusters, whereas PSO scales better and provides near-optimal solutions for larger-scale micro-clusters.
基于粒子群优化的边缘计算微集群异构任务分配
优化任务分配是实现高效边缘计算的必要条件;然而,考虑到边缘系统有限的资源容量和许多创新物联网(IoT)应用的严格QoS要求,与强大的集中式云数据中心相比,边缘系统中的任务分配有所不同。本文旨在针对边缘微集群平台优化异构任务分配。我们通过提出一个基于线性的模型来扩展我们之前在优化微集群任务分配方面的工作,并提出了一种元启发式粒子群优化(PSO)技术,以最大限度地减少批量执行中异构工作负载的完工时间和分配开销时间。基于计算开销和解的质量,对元启发式PSO、混合整数规划(MIP)和随机分配的性能进行了比较评价。我们的研究结果表明,混合整数规划对于小规模集群是有效的,而粒子群算法可以更好地扩展,并为更大规模的微集群提供接近最优的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信