Families of Gröbner Degenerations, Grassmannians and Universal Cluster Algebras

L. Bossinger, F. Mohammadi, Alfredo N'ajera Ch'avez
{"title":"Families of Gröbner Degenerations, Grassmannians and Universal Cluster Algebras","authors":"L. Bossinger, F. Mohammadi, Alfredo N'ajera Ch'avez","doi":"10.3842/SIGMA.2021.059","DOIUrl":null,"url":null,"abstract":"Let $V$ be the weighted projective variety defined by a weighted homogeneous ideal $J$ and $C$ a maximal cone in the Grobner fan of $J$ with $m$ rays. We construct a flat family over $\\mathbb A^m$ that assembles the Grobner degenerations of $V$ associated with all faces of $C$. This is a multi-parameter generalization of the classical one-parameter Grobner degeneration associated to a weight. We show that our family can be constructed from Kaveh-Manon's recent work on the classification of toric flat families over toric varieties: it is the pullback of a toric family defined by a Rees algebra with base $X_C$ (the toric variety associated to $C$) along the universal torsor $\\mathbb A^m \\to X_C$. \nWe apply this construction to the Grassmannians ${\\rm Gr}(2,\\mathbb C^n)$ with their Plucker embeddings and the Grassmannian ${\\rm Gr}(3,\\mathbb C^6)$ with its cluster embedding. In each case there exists a unique maximal Grobner cone whose associated initial ideal is the Stanley-Reisner ideal of the cluster complex. We show that the corresponding cluster algebra with universal coefficients arises as the algebra defining the flat family associated to this cone. Further, for ${\\rm Gr}(2,\\mathbb C^n)$ we show how Escobar-Harada's mutation of Newton-Okounkov bodies can be recovered as tropicalized cluster mutation.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3842/SIGMA.2021.059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Let $V$ be the weighted projective variety defined by a weighted homogeneous ideal $J$ and $C$ a maximal cone in the Grobner fan of $J$ with $m$ rays. We construct a flat family over $\mathbb A^m$ that assembles the Grobner degenerations of $V$ associated with all faces of $C$. This is a multi-parameter generalization of the classical one-parameter Grobner degeneration associated to a weight. We show that our family can be constructed from Kaveh-Manon's recent work on the classification of toric flat families over toric varieties: it is the pullback of a toric family defined by a Rees algebra with base $X_C$ (the toric variety associated to $C$) along the universal torsor $\mathbb A^m \to X_C$. We apply this construction to the Grassmannians ${\rm Gr}(2,\mathbb C^n)$ with their Plucker embeddings and the Grassmannian ${\rm Gr}(3,\mathbb C^6)$ with its cluster embedding. In each case there exists a unique maximal Grobner cone whose associated initial ideal is the Stanley-Reisner ideal of the cluster complex. We show that the corresponding cluster algebra with universal coefficients arises as the algebra defining the flat family associated to this cone. Further, for ${\rm Gr}(2,\mathbb C^n)$ we show how Escobar-Harada's mutation of Newton-Okounkov bodies can be recovered as tropicalized cluster mutation.
Gröbner退化、格拉斯曼代数和泛簇代数族
设$V$为加权齐次理想$J$所定义的加权射影变,$C$是$J$的Grobner扇形中具有$m$射线的极大锥。我们在$\mathbb a ^m$上构造了一个平面族,它集合了与$C$的所有面相关的$V$的Grobner退化。这是与权值相关的经典单参数Grobner退化的多参数推广。我们证明了我们的族可以从Kaveh-Manon最近关于环型平面族的分类的工作中构造出来:它是一个由以$X_C$为基底的Rees代数定义的环型族(与$C$相关的环型族)沿着$\mathbb a ^m \到X_C$的回调。我们将这种构造应用于Grassmannian ${\rm Gr}(2,\mathbb C^n)$及其拔毛器嵌入和Grassmannian ${\rm Gr}(3,\mathbb C^6)$及其聚类嵌入。在每种情况下,都存在一个唯一的极大Grobner锥,其关联的初始理想是簇复合体的Stanley-Reisner理想。我们证明了相应的具有泛系数的聚类代数作为定义与该锥相关的平面族的代数而产生。此外,对于${\rm Gr}(2,\mathbb C^n)$,我们展示了如何将牛顿-奥库科夫体的Escobar-Harada突变恢复为热带化簇突变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信