Harvesting electrostatic energy using super-hydrophobic surfaces

D. Pociecha, P. Zylka
{"title":"Harvesting electrostatic energy using super-hydrophobic surfaces","authors":"D. Pociecha, P. Zylka","doi":"10.1117/12.2245160","DOIUrl":null,"url":null,"abstract":"Almost all environments are now being extensively populated by miniaturized, nano-powered electronic sensor devices communicated together through wireless sensor networks building Internet of Things (IoT). Various energy harvesting techniques are being more and more frequently proposed for battery-less powering of such remote, unattended, implantable or wearable sensors or other low-power electronic gadgets. Energy harvesting relays on extracting energy from the ambient sources readily accessible at the sensor location and converting it into electrical power. The paper exploits possibility of generating electric energy safely accessible for nano-power electronics using tribo-electric and electrostatic induction phenomena displayed at super-hydrophobic surfaces impinged by water droplets. Mechanism of such interaction is discussed and illustrated by experimental results.","PeriodicalId":101814,"journal":{"name":"Scientific Conference on Optical and Electronic Sensors","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Conference on Optical and Electronic Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2245160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Almost all environments are now being extensively populated by miniaturized, nano-powered electronic sensor devices communicated together through wireless sensor networks building Internet of Things (IoT). Various energy harvesting techniques are being more and more frequently proposed for battery-less powering of such remote, unattended, implantable or wearable sensors or other low-power electronic gadgets. Energy harvesting relays on extracting energy from the ambient sources readily accessible at the sensor location and converting it into electrical power. The paper exploits possibility of generating electric energy safely accessible for nano-power electronics using tribo-electric and electrostatic induction phenomena displayed at super-hydrophobic surfaces impinged by water droplets. Mechanism of such interaction is discussed and illustrated by experimental results.
利用超疏水表面收集静电能量
现在,几乎所有的环境都被小型化的纳米电子传感器设备广泛覆盖,这些设备通过无线传感器网络构建物联网(IoT)进行通信。各种能量收集技术越来越频繁地被提出,用于这种远程、无人值守、可植入或可穿戴传感器或其他低功耗电子设备的无电池供电。能量收集依赖于从传感器位置容易获得的环境源中提取能量并将其转换为电能。这篇论文利用在被水滴撞击的超疏水表面上显示的摩擦电和静电感应现象,探索了为纳米电力电子设备安全产生电能的可能性。讨论了这种相互作用的机理,并用实验结果进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信