Detection of Correlated Alarms Using Graph Embedding

Hossein Khaleghy, I. Izadi
{"title":"Detection of Correlated Alarms Using Graph Embedding","authors":"Hossein Khaleghy, I. Izadi","doi":"10.1109/ICSPIS54653.2021.9729368","DOIUrl":null,"url":null,"abstract":"Industrial alarm systems have recently progressed considerably in terms of network complexity and the number of alarms. The increase in complexity and number of alarms presents challenges in these systems that decrease system efficiency and cause distrust of the operator, which might result in widespread damages. One contributing factor in alarm inefficiency is the correlated alarms. These alarms do not contain new information and only confuse the operator. This paper tries to present a novel method for detecting correlated alarms based on artificial intelligence methods to help the operator. The proposed method is based on graph embedding and alarm clustering, resulting in the detection of correlated alarms. To evaluate the proposed method, a case study is conducted on the well-known Tennessee-Eastman process.","PeriodicalId":286966,"journal":{"name":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSPIS54653.2021.9729368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Industrial alarm systems have recently progressed considerably in terms of network complexity and the number of alarms. The increase in complexity and number of alarms presents challenges in these systems that decrease system efficiency and cause distrust of the operator, which might result in widespread damages. One contributing factor in alarm inefficiency is the correlated alarms. These alarms do not contain new information and only confuse the operator. This paper tries to present a novel method for detecting correlated alarms based on artificial intelligence methods to help the operator. The proposed method is based on graph embedding and alarm clustering, resulting in the detection of correlated alarms. To evaluate the proposed method, a case study is conducted on the well-known Tennessee-Eastman process.
基于图嵌入的相关报警检测
工业报警系统最近在网络复杂性和报警数量方面取得了相当大的进展。报警系统的复杂性和数量的增加给这些系统带来了挑战,降低了系统效率,引起了操作员的不信任,这可能导致广泛的损害。导致报警效率低下的一个因素是相关报警。这些告警不包含新的信息,只会使操作人员产生混淆。本文试图提出一种基于人工智能方法的相关报警检测新方法,以帮助操作员。该方法基于图嵌入和报警聚类,从而检测出相关报警。为了评价所提出的方法,以著名的Tennessee-Eastman工艺为例进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信