Bears: Building Energy-Aware Reconfigurable Systems

Benedict Herzog, S. Reif, Fabian Hügel, Wolfgang Schröder-Preikschat, Timo Hönig
{"title":"Bears: Building Energy-Aware Reconfigurable Systems","authors":"Benedict Herzog, S. Reif, Fabian Hügel, Wolfgang Schröder-Preikschat, Timo Hönig","doi":"10.1109/SBESC56799.2022.9964629","DOIUrl":null,"url":null,"abstract":"Energy efficiency has developed to one of the most important non-functional system properties. One keystone to building an energy-efficient system is the right system configuration, which is tailored to the currently running application and hardware. Finding such a right system configuration manually, however, is a complex and often unfeasible task due to the vast configuration space on the one side and the required hardware and application knowledge on the other side. This paper presents and refines an approach to automatically identify and select energy-efficient configurations in re-configurable systems. The approach relies on different machine-learning techniques and achieves energy efficiency improvements of up to 10.8 % out of 13.3 % by automatically adapting the system configuration on a Linux system. Additionally, we analyse the application knowledge required for selecting the configuration and make a proposal how to generate sufficient training data.","PeriodicalId":130479,"journal":{"name":"2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XII Brazilian Symposium on Computing Systems Engineering (SBESC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBESC56799.2022.9964629","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Energy efficiency has developed to one of the most important non-functional system properties. One keystone to building an energy-efficient system is the right system configuration, which is tailored to the currently running application and hardware. Finding such a right system configuration manually, however, is a complex and often unfeasible task due to the vast configuration space on the one side and the required hardware and application knowledge on the other side. This paper presents and refines an approach to automatically identify and select energy-efficient configurations in re-configurable systems. The approach relies on different machine-learning techniques and achieves energy efficiency improvements of up to 10.8 % out of 13.3 % by automatically adapting the system configuration on a Linux system. Additionally, we analyse the application knowledge required for selecting the configuration and make a proposal how to generate sufficient training data.
熊:建筑节能可重构系统
能源效率已经发展成为最重要的非功能系统特性之一。构建节能系统的一个关键是正确的系统配置,它是针对当前运行的应用程序和硬件量身定制的。然而,手动查找这样一个正确的系统配置是一项复杂且通常不可行的任务,因为一方面有巨大的配置空间,另一方面又需要硬件和应用程序知识。本文提出并改进了一种在可重构系统中自动识别和选择节能配置的方法。该方法依赖于不同的机器学习技术,通过自动调整Linux系统上的系统配置,实现了高达13.3%的能源效率提高10.8%。此外,我们分析了选择配置所需的应用知识,并提出了如何生成足够的训练数据的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信