Mladen Skelin, Marc Geilen, Francky Catthoor, Sverre Hendseth
{"title":"Parametrized dataflow scenarios","authors":"Mladen Skelin, Marc Geilen, Francky Catthoor, Sverre Hendseth","doi":"10.1109/EMSOFT.2015.7318264","DOIUrl":null,"url":null,"abstract":"The FSM-based scenario-aware data ow (FSM-SADF) model of computation has been introduced to facilitate the analysis of dynamic streaming applications. FSM-SADF interprets application's execution as an execution of a sequence of static modes of operation called scenarios. Each scenario is modeled using a synchronous data ow (SDF) graph (SDFG), while a finite-state machine (FSM) is used to encode scenario occurrence patterns. However, FSM-SADF can precisely capture only those dynamic applications whose behaviors can be abstracted into a reasonably sized set of scenarios (coarse-grained dynamism). Nevertheless, in many cases, the application may exhibit thousands or even millions of behaviours (fine-grained dynamism). In this work, we generalize the concept of FSM-SADF to one that is able to model dynamic applications exhibiting fine-grained dynamism. We achieve this by applying parametrization to the FSM-SADF's base model, i.e. SDF, and defining scenarios over parametrized SDFGs. We refer to the extension as parametrized FSM-SADF (PFSM-SADF). Thereafter, we present a novel and a fully parametric analysis technique that allows us to derive tight worst-case performance (throughput and latency) guarantees for PFSM-SADF specifications. We evaluate our approach on a realistic case-study from the multimedia domain.","PeriodicalId":297297,"journal":{"name":"2015 International Conference on Embedded Software (EMSOFT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Embedded Software (EMSOFT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMSOFT.2015.7318264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The FSM-based scenario-aware data ow (FSM-SADF) model of computation has been introduced to facilitate the analysis of dynamic streaming applications. FSM-SADF interprets application's execution as an execution of a sequence of static modes of operation called scenarios. Each scenario is modeled using a synchronous data ow (SDF) graph (SDFG), while a finite-state machine (FSM) is used to encode scenario occurrence patterns. However, FSM-SADF can precisely capture only those dynamic applications whose behaviors can be abstracted into a reasonably sized set of scenarios (coarse-grained dynamism). Nevertheless, in many cases, the application may exhibit thousands or even millions of behaviours (fine-grained dynamism). In this work, we generalize the concept of FSM-SADF to one that is able to model dynamic applications exhibiting fine-grained dynamism. We achieve this by applying parametrization to the FSM-SADF's base model, i.e. SDF, and defining scenarios over parametrized SDFGs. We refer to the extension as parametrized FSM-SADF (PFSM-SADF). Thereafter, we present a novel and a fully parametric analysis technique that allows us to derive tight worst-case performance (throughput and latency) guarantees for PFSM-SADF specifications. We evaluate our approach on a realistic case-study from the multimedia domain.