An alternative proof of convergence for Kung-Diamantaras APEX algorithm

H. Chen, R. Liu
{"title":"An alternative proof of convergence for Kung-Diamantaras APEX algorithm","authors":"H. Chen, R. Liu","doi":"10.1109/NNSP.1991.239537","DOIUrl":null,"url":null,"abstract":"The problem of adaptive principal components extraction (APEX) has gained much interest. In 1990, a new neuro-computation algorithm for this purpose was proposed by S. Y. Kung and K. I. Diamautaras. (see ICASSP 90, p.861-4, vol.2, 1990). An alternative proof is presented to illustrate that the K-D algorithm is in fact richer than has been proved before. The proof shows that the neural network will converge and the principal components can be extracted, without assuming that some of projections of synaptic weight vectors have diminished to zero. In addition, the authors show that the K-D algorithm converges exponentially.<<ETX>>","PeriodicalId":354832,"journal":{"name":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks for Signal Processing Proceedings of the 1991 IEEE Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.1991.239537","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The problem of adaptive principal components extraction (APEX) has gained much interest. In 1990, a new neuro-computation algorithm for this purpose was proposed by S. Y. Kung and K. I. Diamautaras. (see ICASSP 90, p.861-4, vol.2, 1990). An alternative proof is presented to illustrate that the K-D algorithm is in fact richer than has been proved before. The proof shows that the neural network will converge and the principal components can be extracted, without assuming that some of projections of synaptic weight vectors have diminished to zero. In addition, the authors show that the K-D algorithm converges exponentially.<>
Kung-Diamantaras APEX算法收敛性的另一个证明
自适应主成分提取(APEX)问题引起了人们的广泛关注。1990年,s.y. Kung和k.i. Diamautaras为此提出了一种新的神经计算算法。(见ICASSP 90,第861-4页,1990年第2卷)。提出了另一种证明来说明K-D算法实际上比以前证明的更丰富。证明了神经网络的收敛性和主成分的提取性,而不需要假设突触权向量的某些投影减小到零。此外,作者还证明了K-D算法是指数收敛的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信