BaDLAD: A Large Multi-Domain Bengali Document Layout Analysis Dataset

Md. Istiak Hossain Shihab, Md. Rakibul Hasan, Mahfuzur Rahman Emon, Syed Mobassir Hossen, Md. Nazmuddoha Ansary, Intesur Ahmed, Fazle Rakib, Shahriar Elahi Dhruvo, Souhardya Saha Dip, Akib Hasan Pavel, Marsia Haque Meghla, Md. Rezwanul Haque1, Sayma Sultana Chowdhury, Farig Sadeque, Tahsin Reasat, Ahmed Imtiaz Humayun, Asif Sushmit
{"title":"BaDLAD: A Large Multi-Domain Bengali Document Layout Analysis Dataset","authors":"Md. Istiak Hossain Shihab, Md. Rakibul Hasan, Mahfuzur Rahman Emon, Syed Mobassir Hossen, Md. Nazmuddoha Ansary, Intesur Ahmed, Fazle Rakib, Shahriar Elahi Dhruvo, Souhardya Saha Dip, Akib Hasan Pavel, Marsia Haque Meghla, Md. Rezwanul Haque1, Sayma Sultana Chowdhury, Farig Sadeque, Tahsin Reasat, Ahmed Imtiaz Humayun, Asif Sushmit","doi":"10.48550/arXiv.2303.05325","DOIUrl":null,"url":null,"abstract":"While strides have been made in deep learning based Bengali Optical Character Recognition (OCR) in the past decade, the absence of large Document Layout Analysis (DLA) datasets has hindered the application of OCR in document transcription, e.g., transcribing historical documents and newspapers. Moreover, rule-based DLA systems that are currently being employed in practice are not robust to domain variations and out-of-distribution layouts. To this end, we present the first multidomain large Bengali Document Layout Analysis Dataset: BaDLAD. This dataset contains 33,695 human annotated document samples from six domains - i) books and magazines, ii) public domain govt. documents, iii) liberation war documents, iv) newspapers, v) historical newspapers, and vi) property deeds, with 710K polygon annotations for four unit types: text-box, paragraph, image, and table. Through preliminary experiments benchmarking the performance of existing state-of-the-art deep learning architectures for English DLA, we demonstrate the efficacy of our dataset in training deep learning based Bengali document digitization models.","PeriodicalId":294655,"journal":{"name":"IEEE International Conference on Document Analysis and Recognition","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2303.05325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

While strides have been made in deep learning based Bengali Optical Character Recognition (OCR) in the past decade, the absence of large Document Layout Analysis (DLA) datasets has hindered the application of OCR in document transcription, e.g., transcribing historical documents and newspapers. Moreover, rule-based DLA systems that are currently being employed in practice are not robust to domain variations and out-of-distribution layouts. To this end, we present the first multidomain large Bengali Document Layout Analysis Dataset: BaDLAD. This dataset contains 33,695 human annotated document samples from six domains - i) books and magazines, ii) public domain govt. documents, iii) liberation war documents, iv) newspapers, v) historical newspapers, and vi) property deeds, with 710K polygon annotations for four unit types: text-box, paragraph, image, and table. Through preliminary experiments benchmarking the performance of existing state-of-the-art deep learning architectures for English DLA, we demonstrate the efficacy of our dataset in training deep learning based Bengali document digitization models.
一个大型多域孟加拉文文档布局分析数据集
虽然在过去十年中基于深度学习的孟加拉光学字符识别(OCR)取得了长足的进步,但缺乏大型文档布局分析(DLA)数据集阻碍了OCR在文档转录中的应用,例如转录历史文档和报纸。此外,目前在实践中使用的基于规则的DLA系统对域变化和分布外布局不具有鲁棒性。为此,我们提出了第一个多域大型孟加拉语文档布局分析数据集:BaDLAD。该数据集包含来自六个领域的33,695个人类注释文档样本- i)书籍和杂志,ii)公共领域政府文件,iii)解放战争文件,iv)报纸,v)历史报纸和vi)财产契约,并为四种单元类型提供710K多边形注释:文本框,段落,图像和表格。通过对现有最先进的英语DLA深度学习架构的性能进行基准测试的初步实验,我们证明了我们的数据集在训练基于深度学习的孟加拉语文档数字化模型方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信