A Simple and Heuristic Model of Tag Recommendation

Dihua Xu, Zhijian Wang, Liping He, Weidong Huang
{"title":"A Simple and Heuristic Model of Tag Recommendation","authors":"Dihua Xu, Zhijian Wang, Liping He, Weidong Huang","doi":"10.1109/ISCID.2011.142","DOIUrl":null,"url":null,"abstract":"Compared to the high computational complexity of many tag recommenders, a simple and heuristic approach of tag recommendation is proposed, based on tag user and item tag co-occurrences in parallel. Firstly, we use aspect model PLSA to set up a probabilistic model. We find that the probability of the recommended tags to an item for a specific user is determined by two factors: the preferences in choosing tags for the user and the tags reflecting the feature of the item. Then we immerge the two factors into a unified representation. The experiments show that our approach not only has better reliability and precision, but also is very simple and more practical than other algorithms.","PeriodicalId":224504,"journal":{"name":"2011 Fourth International Symposium on Computational Intelligence and Design","volume":"3 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2011.142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Compared to the high computational complexity of many tag recommenders, a simple and heuristic approach of tag recommendation is proposed, based on tag user and item tag co-occurrences in parallel. Firstly, we use aspect model PLSA to set up a probabilistic model. We find that the probability of the recommended tags to an item for a specific user is determined by two factors: the preferences in choosing tags for the user and the tags reflecting the feature of the item. Then we immerge the two factors into a unified representation. The experiments show that our approach not only has better reliability and precision, but also is very simple and more practical than other algorithms.
一个简单的启发式标签推荐模型
针对许多标签推荐器计算复杂度高的问题,提出了一种基于标签用户和项目标签并行共现的简单启发式标签推荐方法。首先,我们利用方面模型PLSA建立了概率模型。我们发现,为特定用户推荐标签的概率是由两个因素决定的:用户选择标签的偏好和反映物品特征的标签。然后我们将这两个因素融入到一个统一的表象中。实验表明,该方法不仅具有更好的可靠性和精度,而且比其他算法更简单实用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信