Qing Zheng, George Amvrosiadis, Saurabh Kadekodi, Garth A. Gibson, C. Cranor, B. Settlemyer, G. Grider, Fan Guo
{"title":"Software-defined storage for fast trajectory queries using a deltaFS indexed massive directory","authors":"Qing Zheng, George Amvrosiadis, Saurabh Kadekodi, Garth A. Gibson, C. Cranor, B. Settlemyer, G. Grider, Fan Guo","doi":"10.1145/3149393.3149398","DOIUrl":null,"url":null,"abstract":"In this paper we introduce the Indexed Massive Directory, a new technique for indexing data within DeltaFS. With its design as a scalable, server-less file system for HPC platforms, DeltaFS scales file system metadata performance with application scale. The Indexed Massive Directory is a novel extension to the DeltaFS data plane, enabling in-situ indexing of massive amounts of data written to a single directory simultaneously, and in an arbitrarily large number of files. We achieve this through a memory-efficient indexing mechanism for reordering and indexing data, and a log-structured storage layout to pack small writes into large log objects, all while ensuring compute node resources are used frugally. We demonstrate the efficiency of this indexing mechanism through VPIC, a widely-used simulation code that scales to trillions of particles. With DeltaFS, we modify VPIC to create a file for each particle to receive writes of that particle's output data. Dynamically indexing the directory's underlying storage allows us to achieve a 5000x speedup in single particle trajectory queries, which require reading all data for a single particle. This speedup increases with application scale while the overhead is fixed at 3% of available memory.","PeriodicalId":262458,"journal":{"name":"Proceedings of the 2nd Joint International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Joint International Workshop on Parallel Data Storage & Data Intensive Scalable Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3149393.3149398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper we introduce the Indexed Massive Directory, a new technique for indexing data within DeltaFS. With its design as a scalable, server-less file system for HPC platforms, DeltaFS scales file system metadata performance with application scale. The Indexed Massive Directory is a novel extension to the DeltaFS data plane, enabling in-situ indexing of massive amounts of data written to a single directory simultaneously, and in an arbitrarily large number of files. We achieve this through a memory-efficient indexing mechanism for reordering and indexing data, and a log-structured storage layout to pack small writes into large log objects, all while ensuring compute node resources are used frugally. We demonstrate the efficiency of this indexing mechanism through VPIC, a widely-used simulation code that scales to trillions of particles. With DeltaFS, we modify VPIC to create a file for each particle to receive writes of that particle's output data. Dynamically indexing the directory's underlying storage allows us to achieve a 5000x speedup in single particle trajectory queries, which require reading all data for a single particle. This speedup increases with application scale while the overhead is fixed at 3% of available memory.