Solusi Model Perubahan Garis Pantai dengan Metode Transformasi Elzaki

Maya Sari Wahyuni, S. Sukarna, Muhajir Rosadi
{"title":"Solusi Model Perubahan Garis Pantai dengan Metode Transformasi Elzaki","authors":"Maya Sari Wahyuni, S. Sukarna, Muhajir Rosadi","doi":"10.35580/jmathcos.v4i2.24440","DOIUrl":null,"url":null,"abstract":". Pantai merupakan kawasan yang sering dimanfaatkan untuk berbagai kegiatan manusia, namun seringkali upaya pemanfaatan tersebut menyebabkan permasalahan pantai sehingga garis pantai berubah. Salah satu cara yang dapat digunakan untuk mengetahui perubahan garis pantai yaitu dengan membuat model matematika. Model perubahan garis pantai berbentuk persamaan diferensial parsial dapat diselesaikan secara analitik dengan menggunakan metode transformasi Elazki. Metode transformasi Elzaki merupakan salah satu bentuk transformasi integral yang diperoleh dari integral Fourier sehingga didapatkan transformasi Elzaki dan sifat-sifat dasarnya. Perubahan garis pantai pada penelitian ini dipengaruhi oleh adanya groin. Penyelesaian model perubahan garis pantai dengan metode transformasi Elzaki dilakukan dengan menerapkan transformasi Elzaki pada model perubahan garis pantai untuk memperoleh model perubahan garis pantai yang baru, kemudian menerapkan syarat batas, kemudian menerapkan invers transformasi Elzaki sehingga diperoleh solusi model perubahan garis pantai. Berdasarkan hasil penelitian, diperoleh bahwa terdapat kesamaan antara pola grafik yang dihasilkan dari solusi model perubahan garis pantai dengan metode transformasi Elzaki dan solusi model perubahan garis pantai dengan metode numerik.Kata Kunci: Perubahan garis pantai, Groin, Analitik, Transformasi Elzaki.The beach is a region that is often used for various human activities, however often these utilization efforts cause beach problems so that the shoreline changes. One way that can be used to determine changes in shoreline is to make a mathematical model. The shoreline change model shaped of partial differential equation can be solved analytically by using the Elzaki transform method. The Elzaki transform method is a form of integral transform obtained from the Fourier integral so that the Elzaki transform and its basic properties are obtained. Shoreline change in this research were affected by groyne. Solution of shoreline change model using Elzaki transform method is carried by applying the Elzaki transform to the shoreline change model to obtain a new shoreline change model, then applying the boundary value, then applying the inverse of Elzaki transform so obtained a solution shoreline change model. Based on the research result, it was found that there was a similiarity between the graphic patterns generated from the solution of shoreline change model using Elzaki transform method and the solution of shoreline change model using numerical method.Keywords: Shoreline change, Groyne, Analitic, Elzaki transform","PeriodicalId":363413,"journal":{"name":"Journal of Mathematics Computations and Statistics","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics Computations and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35580/jmathcos.v4i2.24440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

. Pantai merupakan kawasan yang sering dimanfaatkan untuk berbagai kegiatan manusia, namun seringkali upaya pemanfaatan tersebut menyebabkan permasalahan pantai sehingga garis pantai berubah. Salah satu cara yang dapat digunakan untuk mengetahui perubahan garis pantai yaitu dengan membuat model matematika. Model perubahan garis pantai berbentuk persamaan diferensial parsial dapat diselesaikan secara analitik dengan menggunakan metode transformasi Elazki. Metode transformasi Elzaki merupakan salah satu bentuk transformasi integral yang diperoleh dari integral Fourier sehingga didapatkan transformasi Elzaki dan sifat-sifat dasarnya. Perubahan garis pantai pada penelitian ini dipengaruhi oleh adanya groin. Penyelesaian model perubahan garis pantai dengan metode transformasi Elzaki dilakukan dengan menerapkan transformasi Elzaki pada model perubahan garis pantai untuk memperoleh model perubahan garis pantai yang baru, kemudian menerapkan syarat batas, kemudian menerapkan invers transformasi Elzaki sehingga diperoleh solusi model perubahan garis pantai. Berdasarkan hasil penelitian, diperoleh bahwa terdapat kesamaan antara pola grafik yang dihasilkan dari solusi model perubahan garis pantai dengan metode transformasi Elzaki dan solusi model perubahan garis pantai dengan metode numerik.Kata Kunci: Perubahan garis pantai, Groin, Analitik, Transformasi Elzaki.The beach is a region that is often used for various human activities, however often these utilization efforts cause beach problems so that the shoreline changes. One way that can be used to determine changes in shoreline is to make a mathematical model. The shoreline change model shaped of partial differential equation can be solved analytically by using the Elzaki transform method. The Elzaki transform method is a form of integral transform obtained from the Fourier integral so that the Elzaki transform and its basic properties are obtained. Shoreline change in this research were affected by groyne. Solution of shoreline change model using Elzaki transform method is carried by applying the Elzaki transform to the shoreline change model to obtain a new shoreline change model, then applying the boundary value, then applying the inverse of Elzaki transform so obtained a solution shoreline change model. Based on the research result, it was found that there was a similiarity between the graphic patterns generated from the solution of shoreline change model using Elzaki transform method and the solution of shoreline change model using numerical method.Keywords: Shoreline change, Groyne, Analitic, Elzaki transform
。海滩是一个经常用于人类活动的地区,但它的利用常常导致海岸问题,导致海岸线发生变化。了解海岸线变化的一种方法是建立一个数学模型。部分微分方程形状的海岸线变化模型可以用Elazki变换的方法进行分析。Elzaki变换方法是傅里叶变换的一种不可分割的转变,从而获得了Elzaki的转变及其基本属性。这些研究的海岸线变化受到格罗林的影响。埃尔扎克变换模型的完成是通过将埃尔扎克变换模型应用到海岸线变换模型中来实现的。研究发现,从海岸线变化解决方案和埃尔扎克变换方法和海岸线变化解决方案的数据模型中可以找到相似之处。关键字:海岸线变化,格罗夫,分析,埃尔扎克变形。海滩是一个区域,它经常用于不同的人类活动,依赖十种不同的用途,因为这些用途有问题,所以海岸线会改变。在海岸线上决定改变方向的一种方法是制作一个数学模型。线程改变模型的部分差异形状可以通过使用Elzaki转换的方法来分析。埃尔扎克的变形方式是一种从傅里族变换而来的整合形式,所以埃尔扎克的基本属性被打断了。这项研究的线性变化受到格劳恩的影响。短线改变模型的解决方案采用了Elzaki转换方法的方法改变模型,然后应用了最新的短线改变模型,然后应用了最新的短线改变模型,然后应用了最新的短线改变模型。在研究结果的基础上,人们发现,在外观patterns形成的短线解决方案之间存在着相似之处,使用Elzaki转换方法和短线解决方案通过numerical method改变模型。改变短线,Groyne, Analitic, Elzaki
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信