Robust Ego-motion Estimation and Map Matching Technique for Autonomous Vehicle Localization with High Definition Digital Map

Seung-Jun Han, Jungyu Kang, Yongwoo Jo, Dongjin Lee, Jeongdan Choi
{"title":"Robust Ego-motion Estimation and Map Matching Technique for Autonomous Vehicle Localization with High Definition Digital Map","authors":"Seung-Jun Han, Jungyu Kang, Yongwoo Jo, Dongjin Lee, Jeongdan Choi","doi":"10.1109/ICTC.2018.8539518","DOIUrl":null,"url":null,"abstract":"One of the essential technologies required for environmental recognition of an autonomous vehicle is a localization technique that recognizes the position and orientation of the vehicle. In contrast to previous localization techniques that generate map data from sensor data itself, there is an increasing number of studies using high definition (HD) digital maps. The map-based localization technology consists of predicting the position of the next step through the ego-motion of the vehicle and determining the position through map matching. In this paper, we propose a robust ego-motion estimation and map matching technology for robust vehicle localization. First, we propose a visual odometry (VO) model for robust ego-motion estimation and a vehicle planar motion model based on in-vehicle sensors to improve the robustness of VO in the absence of image features. We also introduce a new line segmentation matching model and a geometric correction method of extracted road marking from an inverse perspective mapping (IPM) for robust map matching techniques. The technology proposed in this paper has been verified in various ways through real autonomous vehicles and successfully acquired the autonomous driving license of the Republic of Korea.","PeriodicalId":417962,"journal":{"name":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC.2018.8539518","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

One of the essential technologies required for environmental recognition of an autonomous vehicle is a localization technique that recognizes the position and orientation of the vehicle. In contrast to previous localization techniques that generate map data from sensor data itself, there is an increasing number of studies using high definition (HD) digital maps. The map-based localization technology consists of predicting the position of the next step through the ego-motion of the vehicle and determining the position through map matching. In this paper, we propose a robust ego-motion estimation and map matching technology for robust vehicle localization. First, we propose a visual odometry (VO) model for robust ego-motion estimation and a vehicle planar motion model based on in-vehicle sensors to improve the robustness of VO in the absence of image features. We also introduce a new line segmentation matching model and a geometric correction method of extracted road marking from an inverse perspective mapping (IPM) for robust map matching techniques. The technology proposed in this paper has been verified in various ways through real autonomous vehicles and successfully acquired the autonomous driving license of the Republic of Korea.
基于高清数字地图的自动驾驶汽车定位鲁棒自运动估计与地图匹配技术
自动驾驶汽车环境识别的关键技术之一是识别车辆位置和方向的定位技术。与以往从传感器数据本身生成地图数据的定位技术不同,越来越多的研究使用高清晰度(HD)数字地图。基于地图的定位技术包括通过车辆的自我运动预测下一步的位置,通过地图匹配确定下一步的位置。本文提出了一种鲁棒自运动估计和地图匹配技术,用于鲁棒车辆定位。首先,我们提出了一种用于鲁棒自我运动估计的视觉里程计(VO)模型和一种基于车载传感器的车辆平面运动模型,以提高VO在缺乏图像特征时的鲁棒性。我们还介绍了一种新的线分割匹配模型和一种基于逆透视映射(IPM)提取道路标记的几何校正方法,用于鲁棒地图匹配技术。本文提出的技术已经通过真实的自动驾驶车辆进行了多种方式的验证,并成功获得了韩国的自动驾驶执照。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信